A priori estimates for solutions of nonlinear second-order elliptic equations
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Tome 59 (1976), pp. 31-59

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider classes of elliptic equations of the form $F(x,u,\Delta u,D^2u)=0$ for the solutions of which one establishes local and global a priori estimates for $|D^2u|=(\sum_{ij}u^2_{x_ix_j})^{1/2}$ and $|D^3u|=(\sum_{ijk}u^2_{x_ix_jx_k})^{1/2}$. In particular, one investigates the Monge-Ampere equation $\det\|u_{x_ix_j}\|=f(x)$, $f(x)>0$ and for its convex solutions one constructs a local $|D^2u|$ and a global estimate for $\|D^3u\|_{L^2}$ and a local estimate for.
@article{ZNSL_1976_59_a2,
     author = {A. V. Ivanov},
     title = {A priori estimates for solutions of nonlinear second-order elliptic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {31--59},
     publisher = {mathdoc},
     volume = {59},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a2/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - A priori estimates for solutions of nonlinear second-order elliptic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 31
EP  - 59
VL  - 59
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a2/
LA  - ru
ID  - ZNSL_1976_59_a2
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T A priori estimates for solutions of nonlinear second-order elliptic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 31-59
%V 59
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a2/
%G ru
%F ZNSL_1976_59_a2
A. V. Ivanov. A priori estimates for solutions of nonlinear second-order elliptic equations. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 9, Tome 59 (1976), pp. 31-59. http://geodesic.mathdoc.fr/item/ZNSL_1976_59_a2/