Eigenvalue problem for an irregular $\lambda$-matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 80-92
Cet article a éte moissonné depuis la source Math-Net.Ru
The solution of the eigenvalue problem is examined for the polynomial $D(\lambda)=A_0\lambda^2+A_1\lambda+A_2$ when the matrices $A_0$ and $A_2$ (or one of them) are singular. A normalized process is used for solving the problem, permitting the determination of linearly independent eigenvectors corresponding to the zero eigenvalue of matrix $D(\lambda)$ and to the zero eigenvalue of matrix $A_0$. The computation of the other eigenvalues of $D(\lambda)$ is reduced to the same problem for a constant matrix of lower dimension. An ALGOL program and test examples are presented.
@article{ZNSL_1976_58_a9,
author = {V. N. Kublanovskaya and V. B. Mikhailov and V. B. Khazanov},
title = {Eigenvalue problem for an irregular $\lambda$-matrix},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {80--92},
year = {1976},
volume = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a9/}
}
V. N. Kublanovskaya; V. B. Mikhailov; V. B. Khazanov. Eigenvalue problem for an irregular $\lambda$-matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 80-92. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a9/