Solving a nonlinear spectral problem for a matrix
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 54-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This paper examines the solving of the eigenvalue problem for a matrix $M(\lambda)$ with a nonlinear occurrence of the spectral parameter. Two methods are suggested for replacing the equation $\det M(\lambda)=0$ by a scalar equation $f(\lambda)=0$. Here the function $f(\lambda)$ is not written formally, but a rule for computing $f(\lambda)$ at a fixed point of the domain in which the desired roots lie is indicated. Mьller's method is used to solve the equation $f(\lambda)=0$. The eigenvalue found is refined by Newton's method based on the normalized expansion of matrix $M(\lambda)$ and the linearly independent vectors corresponding to it are computed. An ALGOL program and test examples are presented.
@article{ZNSL_1976_58_a6,
     author = {T. Ya. Kon'kova and V. N. Kublanovskaya and L. T. Savinova},
     title = {Solving a nonlinear spectral problem for a matrix},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {54--66},
     year = {1976},
     volume = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a6/}
}
TY  - JOUR
AU  - T. Ya. Kon'kova
AU  - V. N. Kublanovskaya
AU  - L. T. Savinova
TI  - Solving a nonlinear spectral problem for a matrix
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 54
EP  - 66
VL  - 58
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a6/
LA  - ru
ID  - ZNSL_1976_58_a6
ER  - 
%0 Journal Article
%A T. Ya. Kon'kova
%A V. N. Kublanovskaya
%A L. T. Savinova
%T Solving a nonlinear spectral problem for a matrix
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 54-66
%V 58
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a6/
%G ru
%F ZNSL_1976_58_a6
T. Ya. Kon'kova; V. N. Kublanovskaya; L. T. Savinova. Solving a nonlinear spectral problem for a matrix. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 54-66. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a6/