Existence of a solution of a difference scheme for one variational problem
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 40-47
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of minimizing the functional $$ \int_a^b\varphi(x,y,y',y'')\,dx $$ under the conditions $$ \int_a^b\varphi(x,y,y',y'')\,dx $$ is replaced by the problem of finding the vector $(y_1,y_2,\dots,y_{n-1})$ on which the sum $$ \sum_{k=0}^nC_k\varphi\biggl(x_k,y_k,\frac{y_{k+1}-y_k}{h},\frac{y_{k+1}-2y_k+y_{k+1}}{h^2}\biggr) $$ takes a minimal value. Under certain conditions on $\varphi$ and $C_k$ it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.
@article{ZNSL_1976_58_a4,
author = {Z. A. Vlasova and O. I. Nikolaev},
title = {Existence of a solution of a difference scheme for one variational problem},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {40--47},
year = {1976},
volume = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a4/}
}
Z. A. Vlasova; O. I. Nikolaev. Existence of a solution of a difference scheme for one variational problem. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 40-47. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a4/