Existence of a solution of a difference scheme for one variational problem
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 40-47

Voir la notice de l'article provenant de la source Math-Net.Ru

The problem of minimizing the functional $$ \int_a^b\varphi(x,y,y',y'')\,dx $$ under the conditions $$ \int_a^b\varphi(x,y,y',y'')\,dx $$ is replaced by the problem of finding the vector $(y_1,y_2,\dots,y_{n-1})$ on which the sum $$ \sum_{k=0}^nC_k\varphi\biggl(x_k,y_k,\frac{y_{k+1}-y_k}{h},\frac{y_{k+1}-2y_k+y_{k+1}}{h^2}\biggr) $$ takes a minimal value. Under certain conditions on $\varphi$ and $C_k$ it is proved that a solution exists for the difference scheme constructed. The method of differentiation with respect to a parameter is used for the proof.
@article{ZNSL_1976_58_a4,
     author = {Z. A. Vlasova and O. I. Nikolaev},
     title = {Existence of a solution of a difference scheme for one variational problem},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {40--47},
     publisher = {mathdoc},
     volume = {58},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a4/}
}
TY  - JOUR
AU  - Z. A. Vlasova
AU  - O. I. Nikolaev
TI  - Existence of a solution of a difference scheme for one variational problem
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 40
EP  - 47
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a4/
LA  - ru
ID  - ZNSL_1976_58_a4
ER  - 
%0 Journal Article
%A Z. A. Vlasova
%A O. I. Nikolaev
%T Existence of a solution of a difference scheme for one variational problem
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 40-47
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a4/
%G ru
%F ZNSL_1976_58_a4
Z. A. Vlasova; O. I. Nikolaev. Existence of a solution of a difference scheme for one variational problem. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 40-47. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a4/