Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 37-39 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A method is indicated for the approximate determination of the positive eigenvalue of the problem $x-Q_\lambda x=0$, $\lambda>0$, $x\in K$, $x\ne0$, where $K$ is a cone in Banach space and $Q_\lambda$ is an operator-valued function positive relative to $K$.
@article{ZNSL_1976_58_a3,
     author = {B. A. Ivanov},
     title = {Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {37--39},
     year = {1976},
     volume = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a3/}
}
TY  - JOUR
AU  - B. A. Ivanov
TI  - Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 37
EP  - 39
VL  - 58
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a3/
LA  - ru
ID  - ZNSL_1976_58_a3
ER  - 
%0 Journal Article
%A B. A. Ivanov
%T Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 37-39
%V 58
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a3/
%G ru
%F ZNSL_1976_58_a3
B. A. Ivanov. Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 37-39. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a3/