Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 37-39
Cet article a éte moissonné depuis la source Math-Net.Ru
A method is indicated for the approximate determination of the positive eigenvalue of the problem $x-Q_\lambda x=0$, $\lambda>0$, $x\in K$, $x\ne0$, where $K$ is a cone in Banach space and $Q_\lambda$ is an operator-valued function positive relative to $K$.
@article{ZNSL_1976_58_a3,
author = {B. A. Ivanov},
title = {Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {37--39},
year = {1976},
volume = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a3/}
}
TY - JOUR AU - B. A. Ivanov TI - Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter JO - Zapiski Nauchnykh Seminarov POMI PY - 1976 SP - 37 EP - 39 VL - 58 UR - http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a3/ LA - ru ID - ZNSL_1976_58_a3 ER -
B. A. Ivanov. Approximate computation of the positive eigenvalue of a positive operator with a nonlinear occurrence of a parameter. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 37-39. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a3/