Estimates of rate of convergence of best approximations by local functions
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 22-37 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

Questions are considered on the rate of convergence (in some abstract space of functions) of approximations that are the best in another space. Under specific conditions it is shown that the best approximations by local functions in a weighted Sobolev space $W^r_{p,B}$ yield almost-best approximation $W^r_{q,B}$ with $q\in[p,+\infty)$.
@article{ZNSL_1976_58_a2,
     author = {Yu. K. Dem'yanovich},
     title = {Estimates of rate of convergence of best approximations by local functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {22--37},
     year = {1976},
     volume = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a2/}
}
TY  - JOUR
AU  - Yu. K. Dem'yanovich
TI  - Estimates of rate of convergence of best approximations by local functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 22
EP  - 37
VL  - 58
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a2/
LA  - ru
ID  - ZNSL_1976_58_a2
ER  - 
%0 Journal Article
%A Yu. K. Dem'yanovich
%T Estimates of rate of convergence of best approximations by local functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 22-37
%V 58
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a2/
%G ru
%F ZNSL_1976_58_a2
Yu. K. Dem'yanovich. Estimates of rate of convergence of best approximations by local functions. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 22-37. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a2/