Solving the eigenvalue problem for sparse matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 92-110 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

A modification of the Danilewski method is presented, permitting the solution of the eigenvalue problem for a constant sparse matrix of large order to be reduced to the solution of the same problem for a polynomial matrix of lower order. Certain solution algorithms are proposed for a partial eigenvalue problem for the polynomial matrix. Questions of the realization of the algorithms on a model PRORAB computer are examined.
@article{ZNSL_1976_58_a10,
     author = {V. N. Kublanovskaya and T. N. Smirnova and V. B. Khazanov},
     title = {Solving the eigenvalue problem for sparse matrices},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {92--110},
     year = {1976},
     volume = {58},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a10/}
}
TY  - JOUR
AU  - V. N. Kublanovskaya
AU  - T. N. Smirnova
AU  - V. B. Khazanov
TI  - Solving the eigenvalue problem for sparse matrices
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 92
EP  - 110
VL  - 58
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a10/
LA  - ru
ID  - ZNSL_1976_58_a10
ER  - 
%0 Journal Article
%A V. N. Kublanovskaya
%A T. N. Smirnova
%A V. B. Khazanov
%T Solving the eigenvalue problem for sparse matrices
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 92-110
%V 58
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a10/
%G ru
%F ZNSL_1976_58_a10
V. N. Kublanovskaya; T. N. Smirnova; V. B. Khazanov. Solving the eigenvalue problem for sparse matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 92-110. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a10/