Solving the eigenvalue problem for sparse matrices
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 92-110
Cet article a éte moissonné depuis la source Math-Net.Ru
A modification of the Danilewski method is presented, permitting the solution of the eigenvalue problem for a constant sparse matrix of large order to be reduced to the solution of the same problem for a polynomial matrix of lower order. Certain solution algorithms are proposed for a partial eigenvalue problem for the polynomial matrix. Questions of the realization of the algorithms on a model PRORAB computer are examined.
@article{ZNSL_1976_58_a10,
author = {V. N. Kublanovskaya and T. N. Smirnova and V. B. Khazanov},
title = {Solving the eigenvalue problem for sparse matrices},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {92--110},
year = {1976},
volume = {58},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a10/}
}
V. N. Kublanovskaya; T. N. Smirnova; V. B. Khazanov. Solving the eigenvalue problem for sparse matrices. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 92-110. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a10/