Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 14-21

Voir la notice de l'article provenant de la source Math-Net.Ru

The approximation is studied of the first boundary-value problem for the equation \begin{equation} -\dfrac{d}{dx}K\biggl(x,\dfrac{du}{dx}\biggr)+f(x,u)=0,\quad 01, \tag{1} \end{equation} with boundary conditions \begin{equation} u(0)=u(1)=0 \tag{2} \end{equation} by difference boundary-value problems of form \begin{gather} -[a(x,W_{\overline x})]_x+\varphi(x,W)=0,\quad x\in\omega_n, \tag{3} \\ W(0)=W(1)=0. \tag{4} \end{gather} Theorems are established on the solvability of problem (3), (4). Theorems are proved on uniform convergence and on the order of uniform convergence. Here, as usual, boundedness is not assumed, but just the summability of the corresponding derivatives of the solutions of problem (1), (2). Also considered are singular boundary-value problems of form (1), (2), where uniform convergence with order h is proved under assumption of piecewise absolute continuity of the function $f(x,u(x))$.
@article{ZNSL_1976_58_a1,
     author = {M. N. Yakovlev},
     title = {Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {14--21},
     publisher = {mathdoc},
     volume = {58},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a1/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 14
EP  - 21
VL  - 58
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a1/
LA  - ru
ID  - ZNSL_1976_58_a1
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 14-21
%V 58
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a1/
%G ru
%F ZNSL_1976_58_a1
M. N. Yakovlev. Finite-difference method for solving the first boundary-value problem for a second-order nonlinear ordinary differential equation with a divergent principal part. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 58 (1976), pp. 14-21. http://geodesic.mathdoc.fr/item/ZNSL_1976_58_a1/