On Hilbert subspaces of $l_p$-spaces having full measure
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 3, Tome 55 (1976), pp. 3-14

Voir la notice de l'article provenant de la source Math-Net.Ru

In the space $l_p$, $1\leq p\leq2$, every probabilistic measure is concentated on some Hilbert subspace. In case $p>2$ there exist measures for which no Hilbert subspace has positive measure.
@article{ZNSL_1976_55_a0,
     author = {B. Diallo},
     title = {On {Hilbert} subspaces of $l_p$-spaces having full measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {55},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a0/}
}
TY  - JOUR
AU  - B. Diallo
TI  - On Hilbert subspaces of $l_p$-spaces having full measure
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1976
SP  - 3
EP  - 14
VL  - 55
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a0/
LA  - ru
ID  - ZNSL_1976_55_a0
ER  - 
%0 Journal Article
%A B. Diallo
%T On Hilbert subspaces of $l_p$-spaces having full measure
%J Zapiski Nauchnykh Seminarov POMI
%D 1976
%P 3-14
%V 55
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a0/
%G ru
%F ZNSL_1976_55_a0
B. Diallo. On Hilbert subspaces of $l_p$-spaces having full measure. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 3, Tome 55 (1976), pp. 3-14. http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a0/