On Hilbert subspaces of $l_p$-spaces having full measure
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 3, Tome 55 (1976), pp. 3-14
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			In the space $l_p$, $1\leq p\leq2$, every probabilistic measure is concentated on some Hilbert subspace. In case $p>2$ there exist measures for which no Hilbert subspace has positive measure.
			
            
            
            
          
        
      @article{ZNSL_1976_55_a0,
     author = {B. Diallo},
     title = {On {Hilbert} subspaces of $l_p$-spaces having full measure},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--14},
     publisher = {mathdoc},
     volume = {55},
     year = {1976},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a0/}
}
                      
                      
                    B. Diallo. On Hilbert subspaces of $l_p$-spaces having full measure. Zapiski Nauchnykh Seminarov POMI, Problems of the theory of probability distributions. Part 3, Tome 55 (1976), pp. 3-14. http://geodesic.mathdoc.fr/item/ZNSL_1976_55_a0/
