An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 48 (1974), pp. 205-211

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZNSL_1974_48_a8,
     author = {M. N. Yakovlev},
     title = {An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {205--211},
     publisher = {mathdoc},
     volume = {48},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/}
}
TY  - JOUR
AU  - M. N. Yakovlev
TI  - An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 205
EP  - 211
VL  - 48
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/
LA  - ru
ID  - ZNSL_1974_48_a8
ER  - 
%0 Journal Article
%A M. N. Yakovlev
%T An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 205-211
%V 48
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/
%G ru
%F ZNSL_1974_48_a8
M. N. Yakovlev. An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 48 (1974), pp. 205-211. http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/