An uniform $O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 48 (1974), pp. 205-211
Cet article a éte moissonné depuis la source Math-Net.Ru
@article{ZNSL_1974_48_a8,
author = {M. N. Yakovlev},
title = {An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {205--211},
year = {1974},
volume = {48},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/}
}
TY - JOUR AU - M. N. Yakovlev TI - An uniform $O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1974 SP - 205 EP - 211 VL - 48 UR - http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/ LA - ru ID - ZNSL_1974_48_a8 ER -
M. N. Yakovlev. An uniform $O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 48 (1974), pp. 205-211. http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/