An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 48 (1974), pp. 205-211
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ZNSL_1974_48_a8,
     author = {M. N. Yakovlev},
     title = {An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {205--211},
     publisher = {mathdoc},
     volume = {48},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/}
}
                      
                      
                    TY - JOUR AU - M. N. Yakovlev TI - An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1974 SP - 205 EP - 211 VL - 48 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/ LA - ru ID - ZNSL_1974_48_a8 ER -
%0 Journal Article %A M. N. Yakovlev %T An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations %J Zapiski Nauchnykh Seminarov POMI %D 1974 %P 205-211 %V 48 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/ %G ru %F ZNSL_1974_48_a8
M. N. Yakovlev. An uniform~$O(h^4)$ convergence of one scheme of the method of lines for quasilinear parabolic and hyperbolic equations. Zapiski Nauchnykh Seminarov POMI, Computational methods and automatic programming, Tome 48 (1974), pp. 205-211. http://geodesic.mathdoc.fr/item/ZNSL_1974_48_a8/
