Root lineals and characteristic functions of contractions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 155-158
Cet article a éte moissonné depuis la source Math-Net.Ru
It is proved that $\operatorname{dim}\operatorname{Ker}(T-\lambda I)^n=\operatorname{dim}\operatorname{Ker}K_n(\lambda)$, where $T$ is a contraction of the Hilbert space, $$ K_n(\lambda) =\begin{pmatrix} \theta^{*}(\bar\lambda)&0&\dots&0\\ \frac1{1!}\theta^{*(1)}(\bar\lambda)&\theta^{*}(\bar\lambda)&\dots&0\\ \frac1{(n-1)!}\theta^{*(n-1)}(\bar\lambda)&\frac1{(n-2)!}\theta^{*(n-2)}(\bar\lambda)&\dots& \theta^{*}(\bar\lambda) \end{pmatrix}, $$ $\theta$ – the characteristic function of the operator collegation generated by the contraction $T$.
@article{ZNSL_1974_47_a9,
author = {M. S. Brodskii and Ya. S. Shvartsman},
title = {Root lineals and characteristic functions of contractions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {155--158},
year = {1974},
volume = {47},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a9/}
}
M. S. Brodskii; Ya. S. Shvartsman. Root lineals and characteristic functions of contractions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 155-158. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a9/