Root lineals and characteristic functions of contractions
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 155-158
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that $\operatorname{dim}\operatorname{Ker}(T-\lambda I)^n=\operatorname{dim}\operatorname{Ker}K_n(\lambda)$, where $T$ is a contraction of the Hilbert space,
$$
K_n(\lambda)
=\begin{pmatrix}
\theta^{*}(\bar\lambda)0\dots0\\
\frac1{1!}\theta^{*(1)}(\bar\lambda)\theta^{*}(\bar\lambda)\dots0\\
\frac1{(n-1)!}\theta^{*(n-1)}(\bar\lambda)\frac1{(n-2)!}\theta^{*(n-2)}(\bar\lambda)\dots
\theta^{*}(\bar\lambda)
\end{pmatrix},
$$
$\theta$ – the characteristic function of the operator collegation generated by the contraction $T$.
			
            
            
            
          
        
      @article{ZNSL_1974_47_a9,
     author = {M. S. Brodskii and Ya. S. Shvartsman},
     title = {Root lineals and characteristic functions of contractions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {155--158},
     publisher = {mathdoc},
     volume = {47},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a9/}
}
                      
                      
                    M. S. Brodskii; Ya. S. Shvartsman. Root lineals and characteristic functions of contractions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 155-158. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a9/