Embedding theorems for weighted classes of harmonic and analytic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 120-137

Voir la notice de l'article provenant de la source Math-Net.Ru

The inequality \[ (\int_\Omega|u|^qd\mu)^{1/q} \leq C (\int_\Omega|u|^p\rho d\lambda)^{1/p}, \tag{1} \] is established for analytic (harmonic) functions. Here $\rho$ is a continuous weight functions, $\lambda$ the Lebesgue measure and $\mu$ – a Borel measure. Necessary and sufficient conditions on the measure $\mu$ are given for some concrete $\Omega$ and $\rho$.
@article{ZNSL_1974_47_a7,
     author = {V. L. Oleinik},
     title = {Embedding theorems for weighted classes of harmonic and analytic functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {120--137},
     publisher = {mathdoc},
     volume = {47},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a7/}
}
TY  - JOUR
AU  - V. L. Oleinik
TI  - Embedding theorems for weighted classes of harmonic and analytic functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 120
EP  - 137
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a7/
LA  - ru
ID  - ZNSL_1974_47_a7
ER  - 
%0 Journal Article
%A V. L. Oleinik
%T Embedding theorems for weighted classes of harmonic and analytic functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 120-137
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a7/
%G ru
%F ZNSL_1974_47_a7
V. L. Oleinik. Embedding theorems for weighted classes of harmonic and analytic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 120-137. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a7/