Embedding theorems for weighted classes of harmonic and analytic functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 120-137
Voir la notice de l'article provenant de la source Math-Net.Ru
The inequality
\[
(\int_\Omega|u|^qd\mu)^{1/q}
\leq C
(\int_\Omega|u|^p\rho d\lambda)^{1/p},
\tag{1}
\]
is established for analytic (harmonic) functions. Here $\rho$ is a continuous weight functions, $\lambda$ the Lebesgue measure and $\mu$ – a Borel measure. Necessary and sufficient conditions on the measure $\mu$ are given for some concrete $\Omega$ and $\rho$.
@article{ZNSL_1974_47_a7,
author = {V. L. Oleinik},
title = {Embedding theorems for weighted classes of harmonic and analytic functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {120--137},
publisher = {mathdoc},
volume = {47},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a7/}
}
V. L. Oleinik. Embedding theorems for weighted classes of harmonic and analytic functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 120-137. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a7/