Analytic continuation to the- second sheet of the Predholm determinant of the Schrödinger operator
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 81-89
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper deals with the non-selfadjoint Schrödinger operator in $L_2(R^3)$ with the complexvalued potential $q(x)$. The main subject under consideration is the Fredholm determinant $D(\lambda)$, $\lambda\notin[0,\infty)$ of the equation for resolvent kernel of the operator playing the same role as the determinant of the characteristic function. It is proved that if $q(x)$ can be analytically continued in the sector $|\arg{z}|<\theta$ as the function of argument $r$ ($r=|x|$), $D(\lambda)$ can be analytically continued to the second sheet in the sector $|\arg{\sqrt{\lambda}}|<\pi/2+\theta$.
@article{ZNSL_1974_47_a5,
author = {S. N. Naboko},
title = {Analytic continuation to the- second sheet of the {Predholm} determinant of the {Schr\"odinger} operator},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {81--89},
year = {1974},
volume = {47},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a5/}
}
S. N. Naboko. Analytic continuation to the- second sheet of the Predholm determinant of the Schrödinger operator. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 81-89. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a5/