A~characteristic of invariant order-hounded sets in the space $L^p(\Omega,\mu)$
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 73-80
Voir la notice de l'article provenant de la source Math-Net.Ru
Necessary and sufficient conditions are established for the image $U(B)$ of a set $B\subset L^p$ to be order-bounded in $L^p$ under arbitrary linear continuous mapping $U\colon L^p\to L^p$. The proof is based on properties of absolutely $p$-summing operators.
@article{ZNSL_1974_47_a4,
author = {B. M. Makarov},
title = {A~characteristic of invariant order-hounded sets in the space $L^p(\Omega,\mu)$},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {73--80},
publisher = {mathdoc},
volume = {47},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a4/}
}
B. M. Makarov. A~characteristic of invariant order-hounded sets in the space $L^p(\Omega,\mu)$. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 73-80. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a4/