On an integral representation of functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 67-72

Voir la notice de l'article provenant de la source Math-Net.Ru

An identity is proved for functions from $L_p(E^n)$, $1\leq p\infty$ which represents by itself a certain analogy to the Fourier integral formula.
@article{ZNSL_1974_47_a3,
     author = {V. P. Il'in},
     title = {On an integral representation of functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {67--72},
     publisher = {mathdoc},
     volume = {47},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a3/}
}
TY  - JOUR
AU  - V. P. Il'in
TI  - On an integral representation of functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 67
EP  - 72
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a3/
LA  - ru
ID  - ZNSL_1974_47_a3
ER  - 
%0 Journal Article
%A V. P. Il'in
%T On an integral representation of functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 67-72
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a3/
%G ru
%F ZNSL_1974_47_a3
V. P. Il'in. On an integral representation of functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 67-72. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a3/