On an integral representation of functions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 67-72
Voir la notice de l'article provenant de la source Math-Net.Ru
An identity is proved for functions from $L_p(E^n)$, $1\leq p\infty$ which represents by itself a certain analogy to the Fourier integral formula.
@article{ZNSL_1974_47_a3,
author = {V. P. Il'in},
title = {On an integral representation of functions},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {67--72},
publisher = {mathdoc},
volume = {47},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a3/}
}
V. P. Il'in. On an integral representation of functions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 67-72. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a3/