A~note on the D'Alembert functional equation
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 182-183

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the group analogue of D'Alembert (cosine) functional equation has solutions which are central and symmetrical functions only in the case of abelian group. Necessary and sufficient conditions for representability of the solution in the form $\frac12(U(x)+U(x^{-1}))$ with a homomorphism $U$ are given.
@article{ZNSL_1974_47_a17,
     author = {A. L. Rukhin},
     title = {A~note on the {D'Alembert} functional equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {182--183},
     publisher = {mathdoc},
     volume = {47},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a17/}
}
TY  - JOUR
AU  - A. L. Rukhin
TI  - A~note on the D'Alembert functional equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 182
EP  - 183
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a17/
LA  - ru
ID  - ZNSL_1974_47_a17
ER  - 
%0 Journal Article
%A A. L. Rukhin
%T A~note on the D'Alembert functional equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 182-183
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a17/
%G ru
%F ZNSL_1974_47_a17
A. L. Rukhin. A~note on the D'Alembert functional equation. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 182-183. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a17/