A~function is determined by the norms of its convolutions
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 179-181

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a compact abelian group and $f$, $g\in L^p(G)$, $p$ is not even. Let $\varphi_a$ denote the $a$-shift of the function $\varphi$. It is proved that $$ \bigl\|\sum\alpha_if_{a_i}\bigr\|_{L^p}=\bigl\|\sum\alpha_ig_{a_i}\bigr\|_{L^p}, $$ for all $\alpha_1,\dots,\alpha_n\in\mathbb R^1$ and $a_1,\dots,a_n\in G$ then there exist $b\in G$ and $\alpha\in\mathbb R^1$, $|\alpha|=1$, such that $f=\alpha g_b$.
@article{ZNSL_1974_47_a16,
     author = {A. I. Plotkin},
     title = {A~function is determined by the norms of its convolutions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {179--181},
     publisher = {mathdoc},
     volume = {47},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a16/}
}
TY  - JOUR
AU  - A. I. Plotkin
TI  - A~function is determined by the norms of its convolutions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 179
EP  - 181
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a16/
LA  - ru
ID  - ZNSL_1974_47_a16
ER  - 
%0 Journal Article
%A A. I. Plotkin
%T A~function is determined by the norms of its convolutions
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 179-181
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a16/
%G ru
%F ZNSL_1974_47_a16
A. I. Plotkin. A~function is determined by the norms of its convolutions. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 179-181. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a16/