Positive projections and conditional mathematical expectations
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 172-174

Voir la notice de l'article provenant de la source Math-Net.Ru

The non-negative projections in $L^1$ space are considered. A non-negative projection in $L^1$ is a linear operator $T\colon L^1\to L^1$ such that $T^2=T$ and $T\geq0$. In this paper we give a description of such projections in term of conditional expectation operators. Another authors considered the case of positive projection on $L^1$ which is also contractive whereas we do not require this condition. It is proved that every non-negative projection in $L^1$ space is “nearly” a conditional expectation operator.
@article{ZNSL_1974_47_a14,
     author = {V. G. Kulakova},
     title = {Positive projections and conditional mathematical expectations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {172--174},
     publisher = {mathdoc},
     volume = {47},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a14/}
}
TY  - JOUR
AU  - V. G. Kulakova
TI  - Positive projections and conditional mathematical expectations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 172
EP  - 174
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a14/
LA  - ru
ID  - ZNSL_1974_47_a14
ER  - 
%0 Journal Article
%A V. G. Kulakova
%T Positive projections and conditional mathematical expectations
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 172-174
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a14/
%G ru
%F ZNSL_1974_47_a14
V. G. Kulakova. Positive projections and conditional mathematical expectations. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 172-174. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a14/