The Interpolation by analytic functions smooth on the boundary.~II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 170-171
Voir la notice de l'article provenant de la source Math-Net.Ru
This article deals with the interpolation (in the spirit of the well-known Carleson $H^\infty$-interpolation theorem) of analytic functions with the $n$-th derivative in the Hardy class $H^p$. It is shown that the interpolation of natural data is possible under the Carleson condition (imposed on the knots). Analogous results are valid also for the class of functions with the holderian $n$-th derivative.
@article{ZNSL_1974_47_a13,
author = {A. M. Kotochigov},
title = {The {Interpolation} by analytic functions smooth on the {boundary.~II}},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {170--171},
publisher = {mathdoc},
volume = {47},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a13/}
}
A. M. Kotochigov. The Interpolation by analytic functions smooth on the boundary.~II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 170-171. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a13/