The Interpolation by analytic functions smooth on the boundary. II
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 170-171 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

This article deals with the interpolation (in the spirit of the well-known Carleson $H^\infty$-interpolation theorem) of analytic functions with the $n$-th derivative in the Hardy class $H^p$. It is shown that the interpolation of natural data is possible under the Carleson condition (imposed on the knots). Analogous results are valid also for the class of functions with the holderian $n$-th derivative.
@article{ZNSL_1974_47_a13,
     author = {A. M. Kotochigov},
     title = {The {Interpolation} by analytic functions smooth on the {boundary.~II}},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--171},
     year = {1974},
     volume = {47},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a13/}
}
TY  - JOUR
AU  - A. M. Kotochigov
TI  - The Interpolation by analytic functions smooth on the boundary. II
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 170
EP  - 171
VL  - 47
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a13/
LA  - ru
ID  - ZNSL_1974_47_a13
ER  - 
%0 Journal Article
%A A. M. Kotochigov
%T The Interpolation by analytic functions smooth on the boundary. II
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 170-171
%V 47
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a13/
%G ru
%F ZNSL_1974_47_a13
A. M. Kotochigov. The Interpolation by analytic functions smooth on the boundary. II. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 170-171. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a13/