On the algebraic complexity of a~pair of bilinear forms
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 159-163
Voir la notice de l'article provenant de la source Math-Net.Ru
The problem mentioned in the title is reduced to the evaluation of the range of a set of matrices. The range of matrices $A_1,\dots,A_l$, (denoted by $rg(A_1,\dots,A_l)$,) is the least number of one-dimensional matrices, whose linear combinations represent all $A_i$`s For an operator $A$ in $\mathbb C^n$ there exist a space и and a diagonal operator $B$ with $(A-B)\mathbb C^n\subseteq V$; the minimum of dimensions of such $A_i$`s is denoted by $d(V)$.
Theorem. {\it $rg(E,A)=n+d(A)$, $E$ – denotes the identical matrice.
@article{ZNSL_1974_47_a10,
author = {D. Yu. Grigor'ev},
title = {On the algebraic complexity of a~pair of bilinear forms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {159--163},
publisher = {mathdoc},
volume = {47},
year = {1974},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a10/}
}
D. Yu. Grigor'ev. On the algebraic complexity of a~pair of bilinear forms. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 159-163. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a10/