On the integral representation of linear operators
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 5-14

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $(T_i,\mu_i)$ ($i=1,2$) be two $\sigma$-finite measure spaces and let $(T,\mu)$ be their product-space. Let $E$ be an ideal in the space of measurable functions $S(T_1,\mu_1)$ (i.e. ($|e_1|\leq|e_2|$, $e_1\in S$, $e_2\in E)\Rightarrow e_1\in E$). Theorem 2. {\it Let $U$ – be a linear operator from $E$ to $S(T_2,\mu_2)$. The following assertions are equivalent: $$ {\rm 1)} (Ue)(s)=\int K(t,s)e(t)\,d\mu_1(t)\quad (e\in E),\quad\textwhere K(t,s) is a~$\mu$-measurable kernel; $$ 2) if $0\leq e_n\leq e\in E$, $n=1,2,\dots$, and $e_n\to0$ in measure on every set of finite measure, then $(Ue_n)(s)\to0$ $\mu_2$-a.e.}
@article{ZNSL_1974_47_a0,
     author = {A. V. Bukhvalov},
     title = {On the integral representation of linear operators},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {5--14},
     publisher = {mathdoc},
     volume = {47},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a0/}
}
TY  - JOUR
AU  - A. V. Bukhvalov
TI  - On the integral representation of linear operators
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 5
EP  - 14
VL  - 47
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a0/
LA  - ru
ID  - ZNSL_1974_47_a0
ER  - 
%0 Journal Article
%A A. V. Bukhvalov
%T On the integral representation of linear operators
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 5-14
%V 47
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a0/
%G ru
%F ZNSL_1974_47_a0
A. V. Bukhvalov. On the integral representation of linear operators. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part V, Tome 47 (1974), pp. 5-14. http://geodesic.mathdoc.fr/item/ZNSL_1974_47_a0/