The existence of non-effectivizable estimates in the theory of exponential Diophantine equations
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 77-93

Voir la notice de l'article provenant de la source Math-Net.Ru

The following corrollary of the main theorem of the paper is an example of the estimates mentioned in the title: There is a particular polynomial $A(a,x_1,\dots,x_{\nu})$ with integer coefficients meeting the following two conditions. Firstly, for every natural value of the parameter $a$ the equation $$ A(a,x_1,\dots,x_{\nu})=y+4^y $$ has at most one solution in natural $x_1,\dots,x_{\nu},y$. Secondly, for every general recursive (i.e., effectively computable) function $C$ there is a value of the parameter $a$ for which there is a solution $x_1,\dots,x_{\nu},y$ of the above equation such that $$ \max\{x_1,\dots,x_{\nu},y\}>C(a) $$ The main theorem states that for every recursively enumerable predicate $P(a_1,\dots,a_{\lambda})$ there are expressions $\mathfrak A$ and $\mathfrak L$ built up from natural numbers and variables $a_1,\dots,a_{\lambda}$, $z_1,\dots,z_{\chi}$ by addition, multiplication and exponentation such that $$ P(a_1,\dots,a_{\lambda})\Leftrightarrow(\exists z_1\dotsb z_{\chi})[\mathfrak A=\mathfrak L_1]\Leftrightarrow(\exists!z_1\dotsb z_{\chi})[\mathfrak A=\mathfrak L_1]. $$ A possibility to obtain similar results for Diophantine equations is discussed.
@article{ZNSL_1974_40_a9,
     author = {Yu. V. Matiyasevich},
     title = {The existence of non-effectivizable estimates in the theory of exponential {Diophantine} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {40},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a9/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - The existence of non-effectivizable estimates in the theory of exponential Diophantine equations
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 77
EP  - 93
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a9/
LA  - ru
ID  - ZNSL_1974_40_a9
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T The existence of non-effectivizable estimates in the theory of exponential Diophantine equations
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 77-93
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a9/
%G ru
%F ZNSL_1974_40_a9
Yu. V. Matiyasevich. The existence of non-effectivizable estimates in the theory of exponential Diophantine equations. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 77-93. http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a9/