The existence of non-effectivizable estimates in the theory of exponential Diophantine equations
    
    
  
  
  
      
      
      
        
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 77-93
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following corrollary of the main theorem of the paper is an example of the estimates mentioned in the title:
There is a particular polynomial $A(a,x_1,\dots,x_{\nu})$ with integer coefficients meeting the following two conditions. Firstly, for every natural value of the parameter $a$ the equation
$$
A(a,x_1,\dots,x_{\nu})=y+4^y
$$
has at most one solution in natural $x_1,\dots,x_{\nu},y$. Secondly, for every general recursive (i.e., effectively computable) function $C$ there is a value of the parameter $a$ for which there is a solution $x_1,\dots,x_{\nu},y$ of the above equation such that
$$
\max\{x_1,\dots,x_{\nu},y\}>C(a)
$$ The main theorem states that for every recursively enumerable predicate $P(a_1,\dots,a_{\lambda})$ there are expressions $\mathfrak A$ and $\mathfrak L$ built up from natural numbers and variables $a_1,\dots,a_{\lambda}$, $z_1,\dots,z_{\chi}$
by addition, multiplication and exponentation such that
$$
P(a_1,\dots,a_{\lambda})\Leftrightarrow(\exists z_1\dotsb z_{\chi})[\mathfrak A=\mathfrak L_1]\Leftrightarrow(\exists!z_1\dotsb z_{\chi})[\mathfrak A=\mathfrak L_1].
$$
A possibility to obtain similar results for Diophantine equations is discussed.
			
            
            
            
          
        
      @article{ZNSL_1974_40_a9,
     author = {Yu. V. Matiyasevich},
     title = {The existence of non-effectivizable estimates in the theory of exponential {Diophantine} equations},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--93},
     publisher = {mathdoc},
     volume = {40},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a9/}
}
                      
                      
                    TY - JOUR AU - Yu. V. Matiyasevich TI - The existence of non-effectivizable estimates in the theory of exponential Diophantine equations JO - Zapiski Nauchnykh Seminarov POMI PY - 1974 SP - 77 EP - 93 VL - 40 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a9/ LA - ru ID - ZNSL_1974_40_a9 ER -
Yu. V. Matiyasevich. The existence of non-effectivizable estimates in the theory of exponential Diophantine equations. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 77-93. http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a9/
