A~matrix notation for the nets of marks
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 4-9

Voir la notice de l'article provenant de la source Math-Net.Ru

The author's method [1] of establishing deducibility is intuitionistie propositional calculus (JPC) is clarified in this note. A tested formula is first transformed into a conjunction of $\pi$-chains [1]. Then each $\pi$-chain is rewritten as a matrix. After that some occurences of atomic formulas are marked by “+” or “-” according to so called “rule of marks”. A notion of completed matrix is introduced. The main result is the following theorem: The deducibility of a $\pi$-chain in JPC is equivalent to the possibility to construct a completed matrix for that $\pi$-chain.
@article{ZNSL_1974_40_a1,
     author = {Ya. Ya. Golota},
     title = {A~matrix notation for the nets of marks},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {4--9},
     publisher = {mathdoc},
     volume = {40},
     year = {1974},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a1/}
}
TY  - JOUR
AU  - Ya. Ya. Golota
TI  - A~matrix notation for the nets of marks
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1974
SP  - 4
EP  - 9
VL  - 40
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a1/
LA  - ru
ID  - ZNSL_1974_40_a1
ER  - 
%0 Journal Article
%A Ya. Ya. Golota
%T A~matrix notation for the nets of marks
%J Zapiski Nauchnykh Seminarov POMI
%D 1974
%P 4-9
%V 40
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a1/
%G ru
%F ZNSL_1974_40_a1
Ya. Ya. Golota. A~matrix notation for the nets of marks. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part VI, Tome 40 (1974), pp. 4-9. http://geodesic.mathdoc.fr/item/ZNSL_1974_40_a1/