On recognizing invariant properties of algorithms
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 29-34
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $R$ be an enumerable class of partial recursive functions with a partial recursive universal function $u$ satisfying some general conditions (in particular (a) and (b) from Theorem I). The following theorem is a generalization of Rice's theorem.
Theorem 2. Let $A$ be any nontrivial invariant (under extensional equality) property of (Gödelnumbers relative to $u$ of) members of $R$. Then property $A$ is unrecognizable by general recursive functions from $R$.
The class of all primitive recursive functions and the Gnsegorchyk class $E^n$ (for any $n>1$) satisfy conditions of the theorem.
@article{ZNSL_1972_32_a4,
author = {N. K. Kossovski},
title = {On recognizing invariant properties of algorithms},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {29--34},
publisher = {mathdoc},
volume = {32},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a4/}
}
N. K. Kossovski. On recognizing invariant properties of algorithms. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 29-34. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a4/