On recognizing invariant properties of algorithms
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 29-34

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $R$ be an enumerable class of partial recursive functions with a partial recursive universal function $u$ satisfying some general conditions (in particular (a) and (b) from Theorem I). The following theorem is a generalization of Rice's theorem. Theorem 2. Let $A$ be any nontrivial invariant (under extensional equality) property of (Gödelnumbers relative to $u$ of) members of $R$. Then property $A$ is unrecognizable by general recursive functions from $R$. The class of all primitive recursive functions and the Gnsegorchyk class $E^n$ (for any $n>1$) satisfy conditions of the theorem.
@article{ZNSL_1972_32_a4,
     author = {N. K. Kossovski},
     title = {On recognizing invariant properties of algorithms},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {29--34},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a4/}
}
TY  - JOUR
AU  - N. K. Kossovski
TI  - On recognizing invariant properties of algorithms
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1972
SP  - 29
EP  - 34
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a4/
LA  - ru
ID  - ZNSL_1972_32_a4
ER  - 
%0 Journal Article
%A N. K. Kossovski
%T On recognizing invariant properties of algorithms
%J Zapiski Nauchnykh Seminarov POMI
%D 1972
%P 29-34
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a4/
%G ru
%F ZNSL_1972_32_a4
N. K. Kossovski. On recognizing invariant properties of algorithms. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 29-34. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a4/