Some properties of solutions of equations in a~free semigroup
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 21-28
Voir la notice de l'article provenant de la source Math-Net.Ru
Among other results i t is proved that some recursive set $M$ cannot be represented in the form
$$
a\in M\Leftrightarrow\exists x_1\cdots x_n(P=Q),
$$
where $P=Q$ is an equation in the free semigroup.
@article{ZNSL_1972_32_a3,
author = {N. K. Kossovski},
title = {Some properties of solutions of equations in a~free semigroup},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {21--28},
publisher = {mathdoc},
volume = {32},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a3/}
}
N. K. Kossovski. Some properties of solutions of equations in a~free semigroup. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 21-28. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a3/