Some properties of solutions of equations in a~free semigroup
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 21-28

Voir la notice de l'article provenant de la source Math-Net.Ru

Among other results i t is proved that some recursive set $M$ cannot be represented in the form $$ a\in M\Leftrightarrow\exists x_1\cdots x_n(P=Q), $$ where $P=Q$ is an equation in the free semigroup.
@article{ZNSL_1972_32_a3,
     author = {N. K. Kossovski},
     title = {Some properties of solutions of equations in a~free semigroup},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {21--28},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a3/}
}
TY  - JOUR
AU  - N. K. Kossovski
TI  - Some properties of solutions of equations in a~free semigroup
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1972
SP  - 21
EP  - 28
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a3/
LA  - ru
ID  - ZNSL_1972_32_a3
ER  - 
%0 Journal Article
%A N. K. Kossovski
%T Some properties of solutions of equations in a~free semigroup
%J Zapiski Nauchnykh Seminarov POMI
%D 1972
%P 21-28
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a3/
%G ru
%F ZNSL_1972_32_a3
N. K. Kossovski. Some properties of solutions of equations in a~free semigroup. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 21-28. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a3/