On constructive operators of finite types
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 140-147

Voir la notice de l'article provenant de la source Math-Net.Ru

Finite types and the spaces of finite type are defined as follows: the space of type $0$ is $N$; the spaces of types $(c\times d)$ and $(c\to d)$ are respectively the product of the spaces of types $c$ and $d$ and the space of constructive mappings (effective operations) from the space of type $c$ into the space of type $d$. Strong sheaf-spaces (s.s.s.) are introduced and the spaces of finite types are proved (with the help of Myhill–Shepherdson theorem) to be s.s.s. The theorem about the universal constructive mapping and the normal form theorem are proved for the mappings of s.s.s. The notion of a minimal element of s.s.s. is introduced,minimal elements of the space of partial recursive functions being general recursive functions. The structure of the set of minimal elements of s.s.s. is investigated and Ceitin–Ereisel–Lacombe–Shoenfield theorem is generalized to embeddings of arbitrary s.s.s.
@article{ZNSL_1972_32_a19,
     author = {V. P. Chernov},
     title = {On constructive operators of finite types},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {140--147},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a19/}
}
TY  - JOUR
AU  - V. P. Chernov
TI  - On constructive operators of finite types
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1972
SP  - 140
EP  - 147
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a19/
LA  - ru
ID  - ZNSL_1972_32_a19
ER  - 
%0 Journal Article
%A V. P. Chernov
%T On constructive operators of finite types
%J Zapiski Nauchnykh Seminarov POMI
%D 1972
%P 140-147
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a19/
%G ru
%F ZNSL_1972_32_a19
V. P. Chernov. On constructive operators of finite types. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 140-147. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a19/