An equation calculus for primitive recursive rational-valued functions
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 116-120

Voir la notice de l'article provenant de la source Math-Net.Ru

An equation calculus $\mathbb M$ primitive recursive functions of the positive rational argument is constructed in this paper. Among the axioms and inference roles of $\mathbb M$ there are the postulates of the primitive recursive arithmetic (ERA) by Goodstein. Logical constants $\,\vee,\rceil,\to,\leftrightarrow,\forall_{\leq},\exists_{\leq}$ can be defined in $\mathbb M$. It is proved that $\mathbb M$ is a conservative extension of PRA.
@article{ZNSL_1972_32_a16,
     author = {M. Kh. Fakhmi},
     title = {An equation calculus for primitive recursive rational-valued functions},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {116--120},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a16/}
}
TY  - JOUR
AU  - M. Kh. Fakhmi
TI  - An equation calculus for primitive recursive rational-valued functions
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1972
SP  - 116
EP  - 120
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a16/
LA  - ru
ID  - ZNSL_1972_32_a16
ER  - 
%0 Journal Article
%A M. Kh. Fakhmi
%T An equation calculus for primitive recursive rational-valued functions
%J Zapiski Nauchnykh Seminarov POMI
%D 1972
%P 116-120
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a16/
%G ru
%F ZNSL_1972_32_a16
M. Kh. Fakhmi. An equation calculus for primitive recursive rational-valued functions. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 116-120. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a16/