Arithmetical representations of recursively enumerable sets with a~small number of quantifiers
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 77-84

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that every recursively enumerable set $M$ of positive integers can be represented in each of the following forms: \begin{align} a\in M\Leftrightarrow\exists_p\exists_s\{i=1}^\pi\exists_v[A_i(a,p,s,v)>0],\notag\\ a\in M\Leftrightarrow\exists_s\{i=1}^\pi\exists_p\exists_v[B_i(a,p,s,v)>0],\notag\\ a\in M\Leftrightarrow\exists_t\forall y_{\leq t} \exists_v\exists_w[C(a,t,y,v,w)=0].\notag \end{align} Here $\pi$ is a particular integer, $A_i$, $B_i$, $C$ are polynomials with integer coefficients, $a$, $p$, $s$, $t$, $v$, $w$, $y$ ware variables for positive integers.
@article{ZNSL_1972_32_a10,
     author = {Yu. V. Matiyasevich},
     title = {Arithmetical representations of  recursively enumerable sets with a~small number of quantifiers},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {77--84},
     publisher = {mathdoc},
     volume = {32},
     year = {1972},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a10/}
}
TY  - JOUR
AU  - Yu. V. Matiyasevich
TI  - Arithmetical representations of  recursively enumerable sets with a~small number of quantifiers
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1972
SP  - 77
EP  - 84
VL  - 32
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a10/
LA  - ru
ID  - ZNSL_1972_32_a10
ER  - 
%0 Journal Article
%A Yu. V. Matiyasevich
%T Arithmetical representations of  recursively enumerable sets with a~small number of quantifiers
%J Zapiski Nauchnykh Seminarov POMI
%D 1972
%P 77-84
%V 32
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a10/
%G ru
%F ZNSL_1972_32_a10
Yu. V. Matiyasevich. Arithmetical representations of  recursively enumerable sets with a~small number of quantifiers. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 77-84. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a10/