Arithmetical representations of recursively enumerable sets with a~small number of quantifiers
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 77-84
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that every recursively enumerable set $M$ of positive integers can be represented in each of the following forms:
\begin{align}
a\in M\Leftrightarrow\exists_p\exists_s\{i=1}^\pi\exists_v[A_i(a,p,s,v)>0],\notag\\
a\in M\Leftrightarrow\exists_s\{i=1}^\pi\exists_p\exists_v[B_i(a,p,s,v)>0],\notag\\
a\in M\Leftrightarrow\exists_t\forall y_{\leq t} \exists_v\exists_w[C(a,t,y,v,w)=0].\notag
\end{align}
Here $\pi$ is a particular integer, $A_i$, $B_i$, $C$ are polynomials with integer coefficients, $a$, $p$, $s$, $t$, $v$, $w$, $y$ ware variables for positive integers.
@article{ZNSL_1972_32_a10,
author = {Yu. V. Matiyasevich},
title = {Arithmetical representations of recursively enumerable sets with a~small number of quantifiers},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {77--84},
publisher = {mathdoc},
volume = {32},
year = {1972},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a10/}
}
TY - JOUR AU - Yu. V. Matiyasevich TI - Arithmetical representations of recursively enumerable sets with a~small number of quantifiers JO - Zapiski Nauchnykh Seminarov POMI PY - 1972 SP - 77 EP - 84 VL - 32 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a10/ LA - ru ID - ZNSL_1972_32_a10 ER -
Yu. V. Matiyasevich. Arithmetical representations of recursively enumerable sets with a~small number of quantifiers. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part V, Tome 32 (1972), pp. 77-84. http://geodesic.mathdoc.fr/item/ZNSL_1972_32_a10/