Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part II, Tome 22 (1971), pp. 199-201
Voir la notice de l'article provenant de la source Math-Net.Ru
@article{ZNSL_1971_22_a20,
author = {V. N. Senichkin},
title = {Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {199--201},
publisher = {mathdoc},
volume = {22},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/}
}
TY - JOUR AU - V. N. Senichkin TI - Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials JO - Zapiski Nauchnykh Seminarov POMI PY - 1971 SP - 199 EP - 201 VL - 22 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/ LA - ru ID - ZNSL_1971_22_a20 ER -
%0 Journal Article %A V. N. Senichkin %T Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials %J Zapiski Nauchnykh Seminarov POMI %D 1971 %P 199-201 %V 22 %I mathdoc %U http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/ %G ru %F ZNSL_1971_22_a20
V. N. Senichkin. Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part II, Tome 22 (1971), pp. 199-201. http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/