Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials
Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part II, Tome 22 (1971), pp. 199-201

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZNSL_1971_22_a20,
     author = {V. N. Senichkin},
     title = {Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {199--201},
     publisher = {mathdoc},
     volume = {22},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/}
}
TY  - JOUR
AU  - V. N. Senichkin
TI  - Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1971
SP  - 199
EP  - 201
VL  - 22
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/
LA  - ru
ID  - ZNSL_1971_22_a20
ER  - 
%0 Journal Article
%A V. N. Senichkin
%T Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials
%J Zapiski Nauchnykh Seminarov POMI
%D 1971
%P 199-201
%V 22
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/
%G ru
%F ZNSL_1971_22_a20
V. N. Senichkin. Example of a~thick polynomially convex compact subset of the space~$\mathbf C^2$ with connected interior on which not every continuous function analytic at interior points is uniformly approximable by polynomials. Zapiski Nauchnykh Seminarov POMI, Investigations on linear operators and function theory. Part II, Tome 22 (1971), pp. 199-201. http://geodesic.mathdoc.fr/item/ZNSL_1971_22_a20/