On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 60-66

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that for any recursive sequence $f$ there exists a sequence $g$ of Grzegorczyk class $E^0$ such that $g(0),g(1),\dots$ is obtained from $f(0),f(1),\dots$ by replacing some members $f(i)$ by finite sequences $f(i),\dots,f(i)$. This implies that every recursively convergent recursive sequence of rational numbers can be represented by a functions from $E^0$.
@article{ZNSL_1971_20_a6,
     author = {N. K. Kossovski},
     title = {On algorithmical sequences belonging to the initial class of {Grzegorczyk} hierarchy},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {60--66},
     publisher = {mathdoc},
     volume = {20},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a6/}
}
TY  - JOUR
AU  - N. K. Kossovski
TI  - On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1971
SP  - 60
EP  - 66
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a6/
LA  - ru
ID  - ZNSL_1971_20_a6
ER  - 
%0 Journal Article
%A N. K. Kossovski
%T On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy
%J Zapiski Nauchnykh Seminarov POMI
%D 1971
%P 60-66
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a6/
%G ru
%F ZNSL_1971_20_a6
N. K. Kossovski. On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 60-66. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a6/