On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 60-66
Voir la notice de l'article provenant de la source Math-Net.Ru
It is proved that for any recursive sequence $f$ there exists a sequence $g$ of Grzegorczyk class $E^0$ such that $g(0),g(1),\dots$ is obtained from $f(0),f(1),\dots$ by replacing some members $f(i)$ by finite sequences $f(i),\dots,f(i)$.
This implies that every recursively convergent recursive sequence of rational numbers can be represented by a functions from $E^0$.
@article{ZNSL_1971_20_a6,
author = {N. K. Kossovski},
title = {On algorithmical sequences belonging to the initial class of {Grzegorczyk} hierarchy},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {60--66},
publisher = {mathdoc},
volume = {20},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a6/}
}
N. K. Kossovski. On algorithmical sequences belonging to the initial class of Grzegorczyk hierarchy. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 60-66. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a6/