On Diophantine representations of the sequence of solutions of Pell's equation
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 49-59

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with construction of sufficiently simple Diophantine representations of the sequence of Pell's equation solutions. Such a representation is transformed into a Diophantine representation of the predicate $x=y^z$. It is also proved that there exists a universal polynomial of some simple form.
@article{ZNSL_1971_20_a5,
     author = {N. K. Kossovski},
     title = {On {Diophantine} representations of the sequence of solutions of {Pell's} equation},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {49--59},
     publisher = {mathdoc},
     volume = {20},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a5/}
}
TY  - JOUR
AU  - N. K. Kossovski
TI  - On Diophantine representations of the sequence of solutions of Pell's equation
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1971
SP  - 49
EP  - 59
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a5/
LA  - ru
ID  - ZNSL_1971_20_a5
ER  - 
%0 Journal Article
%A N. K. Kossovski
%T On Diophantine representations of the sequence of solutions of Pell's equation
%J Zapiski Nauchnykh Seminarov POMI
%D 1971
%P 49-59
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a5/
%G ru
%F ZNSL_1971_20_a5
N. K. Kossovski. On Diophantine representations of the sequence of solutions of Pell's equation. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 49-59. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a5/