A~property of recursively enumerable sets containing ``hardly deducible'' formulas
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 200-207

Voir la notice de l'article provenant de la source Math-Net.Ru

There are considered recursively enumerable sets of formulas of the predicate calculus with the following property: for any sufficiently large $n$ there exists a formula in such a set, whose complexity of establishing of deducibility is maximal among all deducible formulas having the length $\leq n$. The article contains a low bound for some characteristic of density of such sets.
@article{ZNSL_1971_20_a18,
     author = {A. O. Slisenko},
     title = {A~property of recursively enumerable sets containing ``hardly deducible'' formulas},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {200--207},
     publisher = {mathdoc},
     volume = {20},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a18/}
}
TY  - JOUR
AU  - A. O. Slisenko
TI  - A~property of recursively enumerable sets containing ``hardly deducible'' formulas
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1971
SP  - 200
EP  - 207
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a18/
LA  - ru
ID  - ZNSL_1971_20_a18
ER  - 
%0 Journal Article
%A A. O. Slisenko
%T A~property of recursively enumerable sets containing ``hardly deducible'' formulas
%J Zapiski Nauchnykh Seminarov POMI
%D 1971
%P 200-207
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a18/
%G ru
%F ZNSL_1971_20_a18
A. O. Slisenko. A~property of recursively enumerable sets containing ``hardly deducible'' formulas. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 200-207. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a18/