On biconjunctive reduction classes
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 170-174
Cet article a éte moissonné depuis la source Math-Net.Ru
A predicate formula is biconjunctive if it is of the form $$ P\biggl(\bigvee_{i=1}^l\&_{j=1}^{\delta_i}F_{ij}\biggr) $$ where $P$ is prefix, $\delta_i\leq2$ and $F_{ij}$ are atomic formulas possibly with negation. There are described 4 classes of biconjunctive formulas each having both undecidable problem of derivability in classical predicate calculus and undecidable problem of finite refutability.
@article{ZNSL_1971_20_a15,
author = {V. P. Orevkov},
title = {On biconjunctive reduction classes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {170--174},
year = {1971},
volume = {20},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/}
}
V. P. Orevkov. On biconjunctive reduction classes. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 170-174. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/