On biconjunctive reduction classes
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 170-174
Voir la notice de l'article provenant de la source Math-Net.Ru
A predicate formula is biconjunctive if it is of the form
$$
P\biggl(\bigvee_{i=1}^l\{j=1}^{\delta_i}F_{ij}\biggr)
$$
where $P$ is prefix, $\delta_i\leq2$ and $F_{ij}$ are atomic formulas possibly with negation. There are described 4 classes of biconjunctive formulas each having both undecidable problem of derivability in classical predicate calculus and undecidable problem of finite refutability.
@article{ZNSL_1971_20_a15,
author = {V. P. Orevkov},
title = {On biconjunctive reduction classes},
journal = {Zapiski Nauchnykh Seminarov POMI},
pages = {170--174},
publisher = {mathdoc},
volume = {20},
year = {1971},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/}
}
V. P. Orevkov. On biconjunctive reduction classes. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 170-174. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/