On biconjunctive reduction classes
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 170-174

Voir la notice de l'article provenant de la source Math-Net.Ru

A predicate formula is biconjunctive if it is of the form $$ P\biggl(\bigvee_{i=1}^l\{j=1}^{\delta_i}F_{ij}\biggr) $$ where $P$ is prefix, $\delta_i\leq2$ and $F_{ij}$ are atomic formulas possibly with negation. There are described 4 classes of biconjunctive formulas each having both undecidable problem of derivability in classical predicate calculus and undecidable problem of finite refutability.
@article{ZNSL_1971_20_a15,
     author = {V. P. Orevkov},
     title = {On biconjunctive reduction classes},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {170--174},
     publisher = {mathdoc},
     volume = {20},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/}
}
TY  - JOUR
AU  - V. P. Orevkov
TI  - On biconjunctive reduction classes
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1971
SP  - 170
EP  - 174
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/
LA  - ru
ID  - ZNSL_1971_20_a15
ER  - 
%0 Journal Article
%A V. P. Orevkov
%T On biconjunctive reduction classes
%J Zapiski Nauchnykh Seminarov POMI
%D 1971
%P 170-174
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/
%G ru
%F ZNSL_1971_20_a15
V. P. Orevkov. On biconjunctive reduction classes. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 170-174. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a15/