On a~class of realizable propositional formulas
Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 8-23

Voir la notice de l'article provenant de la source Math-Net.Ru

Propositional formula is called regularly realizable if there exists a number realizing (in Kleene's sense) every closed, arithmetical substitution instance of the formula. In this paper there is constructed a class $R$ of propositional formulas with the following properties: I) $R$ contains all intuitionistically derivable propositional formulas and is closed relative to rules of intuitionistic propositional calculus; 2) $R$ is recursively decidable; 3) every formula of $R$ is regularly realizable. All realizable propositional formulas known to the author are contained in $R$.
@article{ZNSL_1971_20_a1,
     author = {F. L. Varpakhovskii},
     title = {On a~class of realizable propositional formulas},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {8--23},
     publisher = {mathdoc},
     volume = {20},
     year = {1971},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a1/}
}
TY  - JOUR
AU  - F. L. Varpakhovskii
TI  - On a~class of realizable propositional formulas
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1971
SP  - 8
EP  - 23
VL  - 20
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a1/
LA  - ru
ID  - ZNSL_1971_20_a1
ER  - 
%0 Journal Article
%A F. L. Varpakhovskii
%T On a~class of realizable propositional formulas
%J Zapiski Nauchnykh Seminarov POMI
%D 1971
%P 8-23
%V 20
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a1/
%G ru
%F ZNSL_1971_20_a1
F. L. Varpakhovskii. On a~class of realizable propositional formulas. Zapiski Nauchnykh Seminarov POMI, Studies in constructive mathematics and mathematical logic. Part IV, Tome 20 (1971), pp. 8-23. http://geodesic.mathdoc.fr/item/ZNSL_1971_20_a1/