Non-selfadjointness in $L_2(R^n)$ of an elliptic operator with increasing coefficients
Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 4, Tome 14 (1969), pp. 288-294

Voir la notice de l'article provenant de la source Math-Net.Ru

@article{ZNSL_1969_14_a14,
     author = {N. N. Ural'tseva},
     title = {Non-selfadjointness in $L_2(R^n)$ of an elliptic operator with increasing coefficients},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {288--294},
     publisher = {mathdoc},
     volume = {14},
     year = {1969},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1969_14_a14/}
}
TY  - JOUR
AU  - N. N. Ural'tseva
TI  - Non-selfadjointness in $L_2(R^n)$ of an elliptic operator with increasing coefficients
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1969
SP  - 288
EP  - 294
VL  - 14
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1969_14_a14/
LA  - ru
ID  - ZNSL_1969_14_a14
ER  - 
%0 Journal Article
%A N. N. Ural'tseva
%T Non-selfadjointness in $L_2(R^n)$ of an elliptic operator with increasing coefficients
%J Zapiski Nauchnykh Seminarov POMI
%D 1969
%P 288-294
%V 14
%I mathdoc
%U http://geodesic.mathdoc.fr/item/ZNSL_1969_14_a14/
%G ru
%F ZNSL_1969_14_a14
N. N. Ural'tseva. Non-selfadjointness in $L_2(R^n)$ of an elliptic operator with increasing coefficients. Zapiski Nauchnykh Seminarov POMI, Boundary-value problems of mathematical physics and related problems of function theory. Part 4, Tome 14 (1969), pp. 288-294. http://geodesic.mathdoc.fr/item/ZNSL_1969_14_a14/