Certain questions of potential theory and function theory for regions with irregular boundaries
Zapiski Nauchnykh Seminarov POMI, Certain questions of potential theory and function theory for regions with irregular boundaries, Tome 3 (1967), pp. 3-152 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice du chapitre de livre

@article{ZNSL_1967_3_a0,
     author = {Yu. D. Burago and V. G. Maz'ya},
     title = {Certain questions of potential theory and function theory for regions with irregular boundaries},
     journal = {Zapiski Nauchnykh Seminarov POMI},
     pages = {3--152},
     year = {1967},
     volume = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/ZNSL_1967_3_a0/}
}
TY  - JOUR
AU  - Yu. D. Burago
AU  - V. G. Maz'ya
TI  - Certain questions of potential theory and function theory for regions with irregular boundaries
JO  - Zapiski Nauchnykh Seminarov POMI
PY  - 1967
SP  - 3
EP  - 152
VL  - 3
UR  - http://geodesic.mathdoc.fr/item/ZNSL_1967_3_a0/
LA  - ru
ID  - ZNSL_1967_3_a0
ER  - 
%0 Journal Article
%A Yu. D. Burago
%A V. G. Maz'ya
%T Certain questions of potential theory and function theory for regions with irregular boundaries
%J Zapiski Nauchnykh Seminarov POMI
%D 1967
%P 3-152
%V 3
%U http://geodesic.mathdoc.fr/item/ZNSL_1967_3_a0/
%G ru
%F ZNSL_1967_3_a0
Yu. D. Burago; V. G. Maz'ya. Certain questions of potential theory and function theory for regions with irregular boundaries. Zapiski Nauchnykh Seminarov POMI, Certain questions of potential theory and function theory for regions with irregular boundaries, Tome 3 (1967), pp. 3-152. http://geodesic.mathdoc.fr/item/ZNSL_1967_3_a0/

[1] Mazya V.G., “Klassy oblastei i teoremy vlozheniya funktsionalnykh prostranstv”, DAN SSSR, 133:3 (1960), 527–530 | MR | Zbl

[2] Mazya V.G., Klassy mnozhestv i teoremy vlozheniya funktsionalnykh prostranstv, Dissertatsiya, MGU, 1962

[3] Caccioppoli R., “Misure e integrazione sugli insiemi dimensionalmente orientati”, Rend. della Accad. Naz. dei Lincei, ser. 8, 12:1 (1952), 3–11 | MR | Zbl

[4] Caccioppoli R., “Misure e integrazione sugli insiemi dimensionalmente orientati”, Rend. della Accad. Naz. dei Lincei, ser. 8, 12:2 (1952), 137–146 | MR | Zbl

[5] De Giorgi E., “Su una teoria generale della misure $(r-1)$-dimensionale in uno spazio ad $r$ dimensioni”, Annali di Mat., ser. 4, 36 (1954), 191–213 | DOI | MR | Zbl

[6] De Giorgi E., “Nuovi teoremi relativealle misure $(r-1)$-dimensionali in spazio ad $r$ dimensioni”, Ricerche di Mat., 4 (1955), 95–113 | MR | Zbl

[7] Federer H., “A note on the Gauss-Green theorem”, Proc. Amer. Math. Soc., 9 (1958), 447–451 | DOI | MR | Zbl

[8] Fleming W.H., Rishel R. W., “An integral formula for total gradient variation”, Arch. Math., 11:3 (1960), 218–222 | DOI | MR | Zbl

[9] Fleming W.H., “Functions whose partial derivatives are measures”, Illinois Journ. of Math., 4:3 (1960), 452–478 | MR | Zbl

[10] Krickeberg K., “Distributionen, Funfctionen beschränkter Variation und Lebesguescher Inhalt nichtparametrischer Flächen”, Ann. di Mat., ser. 4, 44 (1957), 105–133 | DOI | MR | Zbl

[11] Polia G., Cere G., Izoperimetricheskie neravenstva v matematicheskoi fizike, M., 1962 | MR | Zbl

[12] Hahn H., Rosenthal A., Set functions, New Mexico, 1948 | MR | Zbl

[13] Federer H., “The $(k,\varphi)$-rectifiable subsets of $n$-space”, Trans. Amer. Math. Soc., 62 (1947), 114–192 | DOI | MR | Zbl