Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{YJOR_2023_33_4_a9, author = {Omar Eidous and Mervat Abu Al-Hayj\`aa}, title = {Numerical integration approximations to estimate the {Weitzman} overlapping measure: {Weibull} distributions}, journal = {Yugoslav journal of operations research}, pages = {699 }, publisher = {mathdoc}, volume = {33}, number = {4}, year = {2023}, language = {en}, url = {http://geodesic.mathdoc.fr/item/YJOR_2023_33_4_a9/} }
TY - JOUR AU - Omar Eidous AU - Mervat Abu Al-Hayjàa TI - Numerical integration approximations to estimate the Weitzman overlapping measure: Weibull distributions JO - Yugoslav journal of operations research PY - 2023 SP - 699 VL - 33 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/YJOR_2023_33_4_a9/ LA - en ID - YJOR_2023_33_4_a9 ER -
%0 Journal Article %A Omar Eidous %A Mervat Abu Al-Hayjàa %T Numerical integration approximations to estimate the Weitzman overlapping measure: Weibull distributions %J Yugoslav journal of operations research %D 2023 %P 699 %V 33 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/YJOR_2023_33_4_a9/ %G en %F YJOR_2023_33_4_a9
Omar Eidous; Mervat Abu Al-Hayjàa. Numerical integration approximations to estimate the Weitzman overlapping measure: Weibull distributions. Yugoslav journal of operations research, Tome 33 (2023) no. 4, p. 699 . http://geodesic.mathdoc.fr/item/YJOR_2023_33_4_a9/