Higher order fractional variational symmetric duality over cone constraints
Yugoslav journal of operations research, Tome 33 (2023) no. 2, p. 259 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The article aims at higher order fractional variational pair of symmetric dual formulations where constraints are defined over cones and explores pertinent duality output applying the idea of higher order η-invexity. Also, we bring into begin a numerical example in order to validate the definition exploited to establish duality results. Moreover , we demonstrate a case study dealing with the static formulation of our considered problem and explore the results carefully.
Classification : 90C29, 90C30, 90C46
Keywords: Symmetric duality, variational problem, higher order η-invexity, cone constraints
@article{YJOR_2023_33_2_a5,
     author = {Sony Khatri and Ashish Kumar Prasad},
     title = {Higher order fractional variational symmetric duality over cone constraints},
     journal = {Yugoslav journal of operations research},
     pages = {259 },
     publisher = {mathdoc},
     volume = {33},
     number = {2},
     year = {2023},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2023_33_2_a5/}
}
TY  - JOUR
AU  - Sony Khatri
AU  - Ashish Kumar Prasad
TI  - Higher order fractional variational symmetric duality over cone constraints
JO  - Yugoslav journal of operations research
PY  - 2023
SP  - 259 
VL  - 33
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2023_33_2_a5/
LA  - en
ID  - YJOR_2023_33_2_a5
ER  - 
%0 Journal Article
%A Sony Khatri
%A Ashish Kumar Prasad
%T Higher order fractional variational symmetric duality over cone constraints
%J Yugoslav journal of operations research
%D 2023
%P 259 
%V 33
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2023_33_2_a5/
%G en
%F YJOR_2023_33_2_a5
Sony Khatri; Ashish Kumar Prasad. Higher order fractional variational symmetric duality over cone constraints. Yugoslav journal of operations research, Tome 33 (2023) no. 2, p. 259 . http://geodesic.mathdoc.fr/item/YJOR_2023_33_2_a5/