Higher order fractional variational symmetric duality over cone constraints
Yugoslav journal of operations research, Tome 33 (2023) no. 2, p. 259
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The article aims at higher order fractional variational pair of symmetric dual formulations where constraints are defined over cones and explores pertinent duality output applying the idea of higher order η-invexity. Also, we bring into begin a numerical example in order to validate the definition exploited to establish duality results. Moreover , we demonstrate a case study dealing with the static formulation of our considered problem and explore the results carefully.
Classification :
90C29, 90C30, 90C46
Keywords: Symmetric duality, variational problem, higher order η-invexity, cone constraints
Keywords: Symmetric duality, variational problem, higher order η-invexity, cone constraints
@article{YJOR_2023_33_2_a5,
author = {Sony Khatri and Ashish Kumar Prasad},
title = {Higher order fractional variational symmetric duality over cone constraints},
journal = {Yugoslav journal of operations research},
pages = {259 },
year = {2023},
volume = {33},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2023_33_2_a5/}
}
TY - JOUR AU - Sony Khatri AU - Ashish Kumar Prasad TI - Higher order fractional variational symmetric duality over cone constraints JO - Yugoslav journal of operations research PY - 2023 SP - 259 VL - 33 IS - 2 UR - http://geodesic.mathdoc.fr/item/YJOR_2023_33_2_a5/ LA - en ID - YJOR_2023_33_2_a5 ER -
Sony Khatri; Ashish Kumar Prasad. Higher order fractional variational symmetric duality over cone constraints. Yugoslav journal of operations research, Tome 33 (2023) no. 2, p. 259 . http://geodesic.mathdoc.fr/item/YJOR_2023_33_2_a5/