On (λ, µ, ζ)-Zweier Ideal Convergence in Intuitionistic Fuzzy Normed Spaces
Yugoslav journal of operations research, Tome 32 (2022) no. 2, p. 235
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we introduce and study a new type of convergence which is namely (λ, µ, ζ)-Zweier convergence and (λ, µ, ζ)-Zweier ideal convergence of triple sequences x = (xijk) in intuitionistic fuzzy normed spaces (IFNS), where λ = (λn), µ = (µm) and ζ = (ζp) are three non-decreasing sequences of positive real numbers such that each tend to infinity. Besides, we define and study (λ, µ, ζ)-Zweier Cauchy and (λ, µ, ζ)- Zweier ideal Cauchy sequences on the said space and establish some relations among them.problem.
Classification :
40C05, 40J05, 46A45
Keywords: Ideal convergence, Zweier operator, (α, µ, ζ)-convergence, Intuitionistic Fuzzy Normed Spaces.
Keywords: Ideal convergence, Zweier operator, (α, µ, ζ)-convergence, Intuitionistic Fuzzy Normed Spaces.
@article{YJOR_2022_32_2_a6,
author = {Carlos Granados and Suman Das},
title = {On (\ensuremath{\lambda}, {\textmu}, {\ensuremath{\zeta})-Zweier} {Ideal} {Convergence} in {Intuitionistic} {Fuzzy} {Normed} {Spaces}},
journal = {Yugoslav journal of operations research},
pages = {235 },
year = {2022},
volume = {32},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a6/}
}
Carlos Granados; Suman Das. On (λ, µ, ζ)-Zweier Ideal Convergence in Intuitionistic Fuzzy Normed Spaces. Yugoslav journal of operations research, Tome 32 (2022) no. 2, p. 235 . http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a6/