Sufficiency and Duality of Set-Valued Fractional Programming Problems via Second-Order Contingent Epiderivative
Yugoslav journal of operations research, Tome 32 (2022) no. 2, p. 167
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we establish second-order sufficient KKT optimality conditions of a set-valued fractional programming problem under second-order generalized cone convexity assumptions. We also prove duality results between the primal problem and second-order dual problems of parametric, Mond-Weir, Wolfe, and mixed types via the notion of second-order contingent epiderivative.
Classification :
26B25, 49N15
Keywords: Convex Cone, Set-Calued Map, Contingent Epiderivative, Duality
Keywords: Convex Cone, Set-Calued Map, Contingent Epiderivative, Duality
@article{YJOR_2022_32_2_a2,
author = {Koushik Das},
title = {Sufficiency and {Duality} of {Set-Valued} {Fractional} {Programming} {Problems} via {Second-Order} {Contingent} {Epiderivative}},
journal = {Yugoslav journal of operations research},
pages = {167 },
year = {2022},
volume = {32},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a2/}
}
TY - JOUR AU - Koushik Das TI - Sufficiency and Duality of Set-Valued Fractional Programming Problems via Second-Order Contingent Epiderivative JO - Yugoslav journal of operations research PY - 2022 SP - 167 VL - 32 IS - 2 UR - http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a2/ LA - en ID - YJOR_2022_32_2_a2 ER -
Koushik Das. Sufficiency and Duality of Set-Valued Fractional Programming Problems via Second-Order Contingent Epiderivative. Yugoslav journal of operations research, Tome 32 (2022) no. 2, p. 167 . http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a2/