The Inverse Minisum Circle Location Problem
Yugoslav journal of operations research, Tome 32 (2022) no. 2, p. 153 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Let n weighted points be given in the plane. The inverse version of the minisum circle location problem deals with modifying the weights of points with minimum cost, such that the sum of the weighted distances from the circumference of a given circle C with radius r, to the given points is minimized. The classical model of this problem contains infinite constraints. In this paper, a mathematical model with finite constraints is presented. Then an efficient method is developed for solving this problem
Classification : 90B85, 90B06
Keywords: Minisum Circle Location, Inverse Facility Location, Variable Weight
@article{YJOR_2022_32_2_a1,
     author = {Mehraneh Gholami and Jafar Fathali},
     title = {The {Inverse} {Minisum} {Circle} {Location} {Problem}},
     journal = {Yugoslav journal of operations research},
     pages = {153 },
     publisher = {mathdoc},
     volume = {32},
     number = {2},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a1/}
}
TY  - JOUR
AU  - Mehraneh Gholami
AU  - Jafar Fathali
TI  - The Inverse Minisum Circle Location Problem
JO  - Yugoslav journal of operations research
PY  - 2022
SP  - 153 
VL  - 32
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a1/
LA  - en
ID  - YJOR_2022_32_2_a1
ER  - 
%0 Journal Article
%A Mehraneh Gholami
%A Jafar Fathali
%T The Inverse Minisum Circle Location Problem
%J Yugoslav journal of operations research
%D 2022
%P 153 
%V 32
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a1/
%G en
%F YJOR_2022_32_2_a1
Mehraneh Gholami; Jafar Fathali. The Inverse Minisum Circle Location Problem. Yugoslav journal of operations research, Tome 32 (2022) no. 2, p. 153 . http://geodesic.mathdoc.fr/item/YJOR_2022_32_2_a1/