Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones
Yugoslav journal of operations research, Tome 32 (2022) no. 1, p. 29
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
This article studies a pair of higher order nondifferentiable symmetric fractional programming problem over cones. First, higher order cone convex function is
introduced. Then using the properties of this function, duality results are set up, which
give the legitimacy of the pair of primal dual symmetric model.
Classification :
90C29;90C30;90C32;90C46
Keywords: Higher Order Symmetric Duality, Higher Order $(\Phi, \rho)$-convexity, Fractional Programs, Nondifferentiable Programs, Generalized Convexity.
Keywords: Higher Order Symmetric Duality, Higher Order $(\Phi, \rho)$-convexity, Fractional Programs, Nondifferentiable Programs, Generalized Convexity.
@article{YJOR_2022_32_1_a1,
author = {Arshpreet Kaur and Mahesh Kumar Sharma},
title = {Higher {Order} {Symmetric} {Duality} for {Multiobjective} {Fractional} {Programming} {Problems} {Over} {Cones}},
journal = {Yugoslav journal of operations research},
pages = {29 },
year = {2022},
volume = {32},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/}
}
TY - JOUR AU - Arshpreet Kaur AU - Mahesh Kumar Sharma TI - Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones JO - Yugoslav journal of operations research PY - 2022 SP - 29 VL - 32 IS - 1 UR - http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/ LA - en ID - YJOR_2022_32_1_a1 ER -
%0 Journal Article %A Arshpreet Kaur %A Mahesh Kumar Sharma %T Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones %J Yugoslav journal of operations research %D 2022 %P 29 %V 32 %N 1 %U http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/ %G en %F YJOR_2022_32_1_a1
Arshpreet Kaur; Mahesh Kumar Sharma. Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones. Yugoslav journal of operations research, Tome 32 (2022) no. 1, p. 29 . http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/