Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones
Yugoslav journal of operations research, Tome 32 (2022) no. 1, p. 29 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

This article studies a pair of higher order nondifferentiable symmetric fractional programming problem over cones. First, higher order cone convex function is introduced. Then using the properties of this function, duality results are set up, which give the legitimacy of the pair of primal dual symmetric model.
Classification : 90C29;90C30;90C32;90C46
Keywords: Higher Order Symmetric Duality, Higher Order $(\Phi, \rho)$-convexity, Fractional Programs, Nondifferentiable Programs, Generalized Convexity.
@article{YJOR_2022_32_1_a1,
     author = {Arshpreet Kaur and Mahesh Kumar Sharma},
     title = {Higher {Order} {Symmetric} {Duality} for {Multiobjective} {Fractional} {Programming} {Problems} {Over} {Cones}},
     journal = {Yugoslav journal of operations research},
     pages = {29 },
     publisher = {mathdoc},
     volume = {32},
     number = {1},
     year = {2022},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/}
}
TY  - JOUR
AU  - Arshpreet Kaur
AU  - Mahesh Kumar Sharma
TI  - Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones
JO  - Yugoslav journal of operations research
PY  - 2022
SP  - 29 
VL  - 32
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/
LA  - en
ID  - YJOR_2022_32_1_a1
ER  - 
%0 Journal Article
%A Arshpreet Kaur
%A Mahesh Kumar Sharma
%T Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones
%J Yugoslav journal of operations research
%D 2022
%P 29 
%V 32
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/
%G en
%F YJOR_2022_32_1_a1
Arshpreet Kaur; Mahesh Kumar Sharma. Higher Order Symmetric Duality for Multiobjective Fractional Programming Problems Over Cones. Yugoslav journal of operations research, Tome 32 (2022) no. 1, p. 29 . http://geodesic.mathdoc.fr/item/YJOR_2022_32_1_a1/