A Study of Nörlund Ideal Convergent Sequence Spaces
Yugoslav journal of operations research, Tome 31 (2021) no. 4, p. 483 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Nörlund matrix $N^t$ in the theory of sequence space was firstly used by Wang. In this paper, by using the Nörlund mean $N^t$ and the notion of ideal convergence, we introduce some new sequence spaces $c_0^I(N^t)$, $c^I(N^t)$ and $c_{ıfty}^I(N^t)$ as a domain of Nörlund mean. We study some topological and algebraic properties on these spaces. Further, some inclusion concerning these spaces are discussed.
Classification : 40A35;46A45, 40G99
Keywords: Nörlund matrix, matrix transformation, Nörlund $I$-convergence, Nörlund $I$-Cauchy, Nörlund $I$-bounded.
@article{YJOR_2021_31_4_a3,
     author = {Vakeel A. Khan and Sameera A. A. Abdullah and Kamal M. A. S. Alshlool},
     title = {A {Study} of {N\"orlund} {Ideal} {Convergent} {Sequence} {Spaces}},
     journal = {Yugoslav journal of operations research},
     pages = {483 },
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/}
}
TY  - JOUR
AU  - Vakeel A. Khan
AU  - Sameera A. A. Abdullah
AU  - Kamal M. A. S. Alshlool
TI  - A Study of Nörlund Ideal Convergent Sequence Spaces
JO  - Yugoslav journal of operations research
PY  - 2021
SP  - 483 
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/
LA  - en
ID  - YJOR_2021_31_4_a3
ER  - 
%0 Journal Article
%A Vakeel A. Khan
%A Sameera A. A. Abdullah
%A Kamal M. A. S. Alshlool
%T A Study of Nörlund Ideal Convergent Sequence Spaces
%J Yugoslav journal of operations research
%D 2021
%P 483 
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/
%G en
%F YJOR_2021_31_4_a3
Vakeel A. Khan; Sameera A. A. Abdullah; Kamal M. A. S. Alshlool. A Study of Nörlund Ideal Convergent Sequence Spaces. Yugoslav journal of operations research, Tome 31 (2021) no. 4, p. 483 . http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/