A Study of Nörlund Ideal Convergent Sequence Spaces
Yugoslav journal of operations research, Tome 31 (2021) no. 4, p. 483

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

The Nörlund matrix $N^t$ in the theory of sequence space was firstly used by Wang. In this paper, by using the Nörlund mean $N^t$ and the notion of ideal convergence, we introduce some new sequence spaces $c_0^I(N^t)$, $c^I(N^t)$ and $c_{ıfty}^I(N^t)$ as a domain of Nörlund mean. We study some topological and algebraic properties on these spaces. Further, some inclusion concerning these spaces are discussed.
Classification : 40A35;46A45, 40G99
Keywords: Nörlund matrix, matrix transformation, Nörlund $I$-convergence, Nörlund $I$-Cauchy, Nörlund $I$-bounded.
@article{YJOR_2021_31_4_a3,
     author = {Vakeel A. Khan and Sameera A. A. Abdullah and Kamal M. A. S. Alshlool},
     title = {A {Study} of {N\"orlund} {Ideal} {Convergent} {Sequence} {Spaces}},
     journal = {Yugoslav journal of operations research},
     pages = {483 },
     publisher = {mathdoc},
     volume = {31},
     number = {4},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/}
}
TY  - JOUR
AU  - Vakeel A. Khan
AU  - Sameera A. A. Abdullah
AU  - Kamal M. A. S. Alshlool
TI  - A Study of Nörlund Ideal Convergent Sequence Spaces
JO  - Yugoslav journal of operations research
PY  - 2021
SP  - 483 
VL  - 31
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/
LA  - en
ID  - YJOR_2021_31_4_a3
ER  - 
%0 Journal Article
%A Vakeel A. Khan
%A Sameera A. A. Abdullah
%A Kamal M. A. S. Alshlool
%T A Study of Nörlund Ideal Convergent Sequence Spaces
%J Yugoslav journal of operations research
%D 2021
%P 483 
%V 31
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/
%G en
%F YJOR_2021_31_4_a3
Vakeel A. Khan; Sameera A. A. Abdullah; Kamal M. A. S. Alshlool. A Study of Nörlund Ideal Convergent Sequence Spaces. Yugoslav journal of operations research, Tome 31 (2021) no. 4, p. 483 . http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a3/