Karush-Kuhn-Tucker Optimality Conditions and Duality for Multiobjective Semi-Infinite Programming With Equilibrium Constraints
Yugoslav journal of operations research, Tome 31 (2021) no. 4, p. 429
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
The purpose of this paper is to study multiobjective semi-infinite programming with equilibrium constraints. Firstly, the necessary and sufficient Karush-Kuhn-Tucker optimality conditions for multiobjective semi-infinite programming with equilibrium constraints are established. Then, we formulate types of Wolfe and Mond-Weir dual
problems and investigate duality relations under convexity assumptions. Some examples are given to verify our results.
Classification :
90C46, 90C33, 49K10
Keywords: Multiobjective Semi-Infinite Programming, Equilibrium Constraints, Constraint Qualifications, Karush-Kuhn-Tucker Optimality Conditions, Mond-Weir Duality, Wolfe Duality.
Keywords: Multiobjective Semi-Infinite Programming, Equilibrium Constraints, Constraint Qualifications, Karush-Kuhn-Tucker Optimality Conditions, Mond-Weir Duality, Wolfe Duality.
@article{YJOR_2021_31_4_a0,
author = {Thanh Tung Le},
title = {Karush-Kuhn-Tucker {Optimality} {Conditions} and {Duality} for {Multiobjective} {Semi-Infinite} {Programming} {With} {Equilibrium} {Constraints}},
journal = {Yugoslav journal of operations research},
pages = {429 },
year = {2021},
volume = {31},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a0/}
}
TY - JOUR AU - Thanh Tung Le TI - Karush-Kuhn-Tucker Optimality Conditions and Duality for Multiobjective Semi-Infinite Programming With Equilibrium Constraints JO - Yugoslav journal of operations research PY - 2021 SP - 429 VL - 31 IS - 4 UR - http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a0/ LA - en ID - YJOR_2021_31_4_a0 ER -
%0 Journal Article %A Thanh Tung Le %T Karush-Kuhn-Tucker Optimality Conditions and Duality for Multiobjective Semi-Infinite Programming With Equilibrium Constraints %J Yugoslav journal of operations research %D 2021 %P 429 %V 31 %N 4 %U http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a0/ %G en %F YJOR_2021_31_4_a0
Thanh Tung Le. Karush-Kuhn-Tucker Optimality Conditions and Duality for Multiobjective Semi-Infinite Programming With Equilibrium Constraints. Yugoslav journal of operations research, Tome 31 (2021) no. 4, p. 429 . http://geodesic.mathdoc.fr/item/YJOR_2021_31_4_a0/