On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
Yugoslav journal of operations research, Tome 31 (2021) no. 3, p. 373 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We say that a regular graph $G$ of order $n$ and degree $r \ge 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers $\tau$ and $\theta$ such that $\lvert S_i \cap S_j \lvert = \tau$ for any two adjacent vertices $i$ and $j$, and $\lvert S_i \cap S_j \lvert = \theta$ for any two distinct non-adjacent vertices $i$ and $j$, where $S_k$ denotes the neighborhood of the vertex $k$. Let $\lambda_1 = r$, $\lambda_2$ and $\lambda_3$ be the distinct eigenvalues of a connected strongly regular graph. Let $m_1 = 1$, $m_2$ and $m_3$ denote the multiplicity of $r$, $\lambda_1$ and $\lambda_3$, respectively. We here describe the parameters $n$, $r$, $\tau$ and $\theta$ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
Classification : 05C50
Keywords: Strongly Regular Graph, Conference Graph, Integral Graph
@article{YJOR_2021_31_3_a6,
     author = {Mirko Lepovi\'c},
     title = {On {Strongly} {Regular} {Graphs} {With} $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$},
     journal = {Yugoslav journal of operations research},
     pages = {373 },
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/}
}
TY  - JOUR
AU  - Mirko Lepović
TI  - On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
JO  - Yugoslav journal of operations research
PY  - 2021
SP  - 373 
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/
LA  - en
ID  - YJOR_2021_31_3_a6
ER  - 
%0 Journal Article
%A Mirko Lepović
%T On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
%J Yugoslav journal of operations research
%D 2021
%P 373 
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/
%G en
%F YJOR_2021_31_3_a6
Mirko Lepović. On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$. Yugoslav journal of operations research, Tome 31 (2021) no. 3, p. 373 . http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/