On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
Yugoslav journal of operations research, Tome 31 (2021) no. 3, p. 373
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
We say that a regular graph $G$ of order $n$ and degree $r \ge 1$ (which is not
the complete graph) is strongly regular if there exist non-negative integers $\tau$ and $\theta$ such
that $\lvert S_i \cap S_j \lvert = \tau$ for any two adjacent vertices $i$ and $j$, and $\lvert S_i \cap S_j \lvert = \theta$ for any two
distinct non-adjacent vertices $i$ and $j$, where $S_k$ denotes the neighborhood of the vertex
$k$. Let $\lambda_1 = r$, $\lambda_2$ and $\lambda_3$ be the distinct eigenvalues of a connected strongly regular
graph. Let $m_1 = 1$, $m_2$ and $m_3$ denote the multiplicity of $r$, $\lambda_1$ and $\lambda_3$, respectively. We
here describe the parameters $n$, $r$, $\tau$ and $\theta$ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
Classification :
05C50
Keywords: Strongly Regular Graph, Conference Graph, Integral Graph
Keywords: Strongly Regular Graph, Conference Graph, Integral Graph
@article{YJOR_2021_31_3_a6,
author = {Mirko Lepovi\'c},
title = {On {Strongly} {Regular} {Graphs} {With} $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$},
journal = {Yugoslav journal of operations research},
pages = {373 },
year = {2021},
volume = {31},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/}
}
TY - JOUR
AU - Mirko Lepović
TI - On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
JO - Yugoslav journal of operations research
PY - 2021
SP - 373
VL - 31
IS - 3
UR - http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/
LA - en
ID - YJOR_2021_31_3_a6
ER -
%0 Journal Article
%A Mirko Lepović
%T On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
%J Yugoslav journal of operations research
%D 2021
%P 373
%V 31
%N 3
%U http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/
%G en
%F YJOR_2021_31_3_a6
Mirko Lepović. On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$. Yugoslav journal of operations research, Tome 31 (2021) no. 3, p. 373 . http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/