On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
Yugoslav journal of operations research, Tome 31 (2021) no. 3, p. 373

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

We say that a regular graph $G$ of order $n$ and degree $r \ge 1$ (which is not the complete graph) is strongly regular if there exist non-negative integers $\tau$ and $\theta$ such that $\lvert S_i \cap S_j \lvert = \tau$ for any two adjacent vertices $i$ and $j$, and $\lvert S_i \cap S_j \lvert = \theta$ for any two distinct non-adjacent vertices $i$ and $j$, where $S_k$ denotes the neighborhood of the vertex $k$. Let $\lambda_1 = r$, $\lambda_2$ and $\lambda_3$ be the distinct eigenvalues of a connected strongly regular graph. Let $m_1 = 1$, $m_2$ and $m_3$ denote the multiplicity of $r$, $\lambda_1$ and $\lambda_3$, respectively. We here describe the parameters $n$, $r$, $\tau$ and $\theta$ for strongly regular graphs with $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
Classification : 05C50
Keywords: Strongly Regular Graph, Conference Graph, Integral Graph
@article{YJOR_2021_31_3_a6,
     author = {Mirko Lepovi\'c},
     title = {On {Strongly} {Regular} {Graphs} {With} $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$},
     journal = {Yugoslav journal of operations research},
     pages = {373 },
     publisher = {mathdoc},
     volume = {31},
     number = {3},
     year = {2021},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/}
}
TY  - JOUR
AU  - Mirko Lepović
TI  - On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
JO  - Yugoslav journal of operations research
PY  - 2021
SP  - 373 
VL  - 31
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/
LA  - en
ID  - YJOR_2021_31_3_a6
ER  - 
%0 Journal Article
%A Mirko Lepović
%T On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$
%J Yugoslav journal of operations research
%D 2021
%P 373 
%V 31
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/
%G en
%F YJOR_2021_31_3_a6
Mirko Lepović. On Strongly Regular Graphs With $m_2 = qm_3$ and $m_3 = qm_2$ for $q=\frac{7}{2}, \frac{7}{3}, \frac{7}{4}, \frac{7}{5}, \frac{7}{6}$. Yugoslav journal of operations research, Tome 31 (2021) no. 3, p. 373 . http://geodesic.mathdoc.fr/item/YJOR_2021_31_3_a6/