On $(\lambda, \mu)$ - Zweier Ideal Convergence in Intuitionistic Fuzzy Normed Space
Yugoslav journal of operations research, Tome 30 (2020) no. 4, p. 413
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we study and introduce a new type of convergence, namely
$(\lambda, \mu)$ - Zweier convergence and $(\lambda, \mu)$ - Zweier ideal convergence of double sequences
$x = (x_{ij})$ in intuitionistic fuzzy normed space (IFNS), where $\lambda = (\lambda_n)$ and $\mu = (\mu_m)$
are two non-decreasing sequences of positive real numbers such that each tending to
infinity. Furthermore, we studied$(\lambda, \mu)$ - Zweier Cauchy and $(\lambda, \mu)$ - Zweier ideal Cauchy
sequences on the said space and established a relation between them.
Classification :
40C05, 40J05, 46A45
Keywords: Ideal Convergence, Zweier Operator, $(\lambda, \mu)$- convergence, Intuitionistic Fuzzy Normed Spaces
Keywords: Ideal Convergence, Zweier Operator, $(\lambda, \mu)$- convergence, Intuitionistic Fuzzy Normed Spaces
@article{YJOR_2020_30_4_a1,
author = {Vakeel A. Khan and Mobeen Ahmad},
title = {On $(\lambda, \mu)$ - {Zweier} {Ideal} {Convergence} in {Intuitionistic} {Fuzzy} {Normed} {Space}},
journal = {Yugoslav journal of operations research},
pages = {413 },
year = {2020},
volume = {30},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2020_30_4_a1/}
}
TY - JOUR AU - Vakeel A. Khan AU - Mobeen Ahmad TI - On $(\lambda, \mu)$ - Zweier Ideal Convergence in Intuitionistic Fuzzy Normed Space JO - Yugoslav journal of operations research PY - 2020 SP - 413 VL - 30 IS - 4 UR - http://geodesic.mathdoc.fr/item/YJOR_2020_30_4_a1/ LA - en ID - YJOR_2020_30_4_a1 ER -
Vakeel A. Khan; Mobeen Ahmad. On $(\lambda, \mu)$ - Zweier Ideal Convergence in Intuitionistic Fuzzy Normed Space. Yugoslav journal of operations research, Tome 30 (2020) no. 4, p. 413 . http://geodesic.mathdoc.fr/item/YJOR_2020_30_4_a1/