Second-Order Symmetric Duality in Multiobjective Variational Problems
Yugoslav journal of operations research, Tome 29 (2019) no. 3, p. 295
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this work, we introduce a pair of multiobjective second-order symmetric dual variational problems. Weak, strong, and converse duality theorems for this pair are established under the assumption of $\eta$-bonvexity/$\eta$-pseudobonvexity. At the end, the static case of our problems has also been discussed.
Classification :
46N10, 52A41, 90C46, 49N15, 49M29
Keywords: Multiobjective Programming, Variational Problem, Second-Order Duality, Efficient Solutions, $\eta$-bonvexity/$\eta$-pseudobonvexity.
Keywords: Multiobjective Programming, Variational Problem, Second-Order Duality, Efficient Solutions, $\eta$-bonvexity/$\eta$-pseudobonvexity.
@article{YJOR_2019_29_3_a0,
author = {Geeta Sachdev and Khushboo Verma and T. R. Gulati},
title = {Second-Order {Symmetric} {Duality} in {Multiobjective} {Variational} {Problems}},
journal = {Yugoslav journal of operations research},
pages = {295 },
year = {2019},
volume = {29},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2019_29_3_a0/}
}
TY - JOUR AU - Geeta Sachdev AU - Khushboo Verma AU - T. R. Gulati TI - Second-Order Symmetric Duality in Multiobjective Variational Problems JO - Yugoslav journal of operations research PY - 2019 SP - 295 VL - 29 IS - 3 UR - http://geodesic.mathdoc.fr/item/YJOR_2019_29_3_a0/ LA - en ID - YJOR_2019_29_3_a0 ER -
Geeta Sachdev; Khushboo Verma; T. R. Gulati. Second-Order Symmetric Duality in Multiobjective Variational Problems. Yugoslav journal of operations research, Tome 29 (2019) no. 3, p. 295 . http://geodesic.mathdoc.fr/item/YJOR_2019_29_3_a0/