Second Order Symmetric Duality in Fractional Variational Problems Over Cone Constraints
Yugoslav journal of operations research, Tome 28 (2018) no. 1, p. 39 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In the present paper, we introduce a pair of second order fractional sym- metric variational programs over cone constraints and derive weak, strong, and converse duality theorems under second order $\mathcal$-convexity assumptions. Moreover, self duality theorem is also discussed. Our results give natural unification and extension of some previously known results in the literature.
Classification : 90C26, 90C29, 90C30, 90C46
Keywords: Variational problem, Second order F-convexity, Second order duality
@article{YJOR_2018_28_1_a2,
     author = {Anurag Jayswal and Shalini Jha},
     title = {Second {Order} {Symmetric} {Duality} in {Fractional} {Variational} {Problems} {Over} {Cone} {Constraints}},
     journal = {Yugoslav journal of operations research},
     pages = {39 },
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2018_28_1_a2/}
}
TY  - JOUR
AU  - Anurag Jayswal
AU  - Shalini Jha
TI  - Second Order Symmetric Duality in Fractional Variational Problems Over Cone Constraints
JO  - Yugoslav journal of operations research
PY  - 2018
SP  - 39 
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2018_28_1_a2/
LA  - en
ID  - YJOR_2018_28_1_a2
ER  - 
%0 Journal Article
%A Anurag Jayswal
%A Shalini Jha
%T Second Order Symmetric Duality in Fractional Variational Problems Over Cone Constraints
%J Yugoslav journal of operations research
%D 2018
%P 39 
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2018_28_1_a2/
%G en
%F YJOR_2018_28_1_a2
Anurag Jayswal; Shalini Jha. Second Order Symmetric Duality in Fractional Variational Problems Over Cone Constraints. Yugoslav journal of operations research, Tome 28 (2018) no. 1, p. 39 . http://geodesic.mathdoc.fr/item/YJOR_2018_28_1_a2/