Sufficient Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems Via Higher Order Strong Convexity
Yugoslav journal of operations research, Tome 27 (2017) no. 2, p. 227
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In this paper, we define some new generalizations of strongly convex functions
of order m for locally Lipschitz functions using Clarke subdifferential. Suitable examples illustrating the non emptiness of the newly defined classes of functions and their
relationships with classical notions of pseudoconvexity and quasiconvexity are provided.
These generalizations are then employed to establish sufficient optimality conditions for a
nonsmooth multiobjective optimization problem involving support functions of compact
convex sets. Furthermore, we formulate a mixed type dual model for the primal problem
and establish weak and strong duality theorems using the notion of strict efficiency of
order m. The results presented in this paper extend and unify several known results from
the literature to a more general class of functions as well as optimization problems.
Classification :
90C29, 90C46, 49N15
Keywords: Nonsmooth Multiobjective Programming, Support Functions, Strict Minimizers, Optimality Conditions, Mixed Duality
Keywords: Nonsmooth Multiobjective Programming, Support Functions, Strict Minimizers, Optimality Conditions, Mixed Duality
@article{YJOR_2017_27_2_a5,
author = {Balendu B. Upadhyay and Ningthoujam Priyobarta and Yumnam S. Rohen},
title = {Sufficient {Optimality} {Conditions} and {Duality} for {Nonsmooth} {Multiobjective} {Optimization} {Problems} {Via} {Higher} {Order} {Strong} {Convexity}},
journal = {Yugoslav journal of operations research},
pages = {227 },
year = {2017},
volume = {27},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a5/}
}
TY - JOUR AU - Balendu B. Upadhyay AU - Ningthoujam Priyobarta AU - Yumnam S. Rohen TI - Sufficient Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems Via Higher Order Strong Convexity JO - Yugoslav journal of operations research PY - 2017 SP - 227 VL - 27 IS - 2 UR - http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a5/ LA - en ID - YJOR_2017_27_2_a5 ER -
%0 Journal Article %A Balendu B. Upadhyay %A Ningthoujam Priyobarta %A Yumnam S. Rohen %T Sufficient Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems Via Higher Order Strong Convexity %J Yugoslav journal of operations research %D 2017 %P 227 %V 27 %N 2 %U http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a5/ %G en %F YJOR_2017_27_2_a5
Balendu B. Upadhyay; Ningthoujam Priyobarta; Yumnam S. Rohen. Sufficient Optimality Conditions and Duality for Nonsmooth Multiobjective Optimization Problems Via Higher Order Strong Convexity. Yugoslav journal of operations research, Tome 27 (2017) no. 2, p. 227 . http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a5/