Set Optimization Using Improvement Sets
Yugoslav journal of operations research, Tome 27 (2017) no. 2, p. 153

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we introduce a notion of minimal solutions for set-valued optimization problem in terms of improvement sets by unifying a solution notion, introduced by Kuroiwa [15] for set-valued problems, and a notion of optimal solutions in terms of improvement sets, introduced by Chicco et al. [4] for vector optimization problems. We provide existence theorems for these solutions, and establish lower convergence of the minimal solution sets in the sense of Painlevé-Kuratowski.
Classification : 49J53, 90C30
Keywords: Set-valued Optimization, Improvement Set, Painlevé-Kuratowski Convergence
@article{YJOR_2017_27_2_a1,
     author = {M. Dhingra and C.S. Lalitha},
     title = {Set {Optimization} {Using} {Improvement} {Sets}},
     journal = {Yugoslav journal of operations research},
     pages = {153 },
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/}
}
TY  - JOUR
AU  - M. Dhingra
AU  - C.S. Lalitha
TI  - Set Optimization Using Improvement Sets
JO  - Yugoslav journal of operations research
PY  - 2017
SP  - 153 
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/
LA  - en
ID  - YJOR_2017_27_2_a1
ER  - 
%0 Journal Article
%A M. Dhingra
%A C.S. Lalitha
%T Set Optimization Using Improvement Sets
%J Yugoslav journal of operations research
%D 2017
%P 153 
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/
%G en
%F YJOR_2017_27_2_a1
M. Dhingra; C.S. Lalitha. Set Optimization Using Improvement Sets. Yugoslav journal of operations research, Tome 27 (2017) no. 2, p. 153 . http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/