Set Optimization Using Improvement Sets
Yugoslav journal of operations research, Tome 27 (2017) no. 2, p. 153 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

In this paper we introduce a notion of minimal solutions for set-valued optimization problem in terms of improvement sets by unifying a solution notion, introduced by Kuroiwa [15] for set-valued problems, and a notion of optimal solutions in terms of improvement sets, introduced by Chicco et al. [4] for vector optimization problems. We provide existence theorems for these solutions, and establish lower convergence of the minimal solution sets in the sense of Painlevé-Kuratowski.
Classification : 49J53, 90C30
Keywords: Set-valued Optimization, Improvement Set, Painlevé-Kuratowski Convergence
@article{YJOR_2017_27_2_a1,
     author = {M. Dhingra and C.S. Lalitha},
     title = {Set {Optimization} {Using} {Improvement} {Sets}},
     journal = {Yugoslav journal of operations research},
     pages = {153 },
     publisher = {mathdoc},
     volume = {27},
     number = {2},
     year = {2017},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/}
}
TY  - JOUR
AU  - M. Dhingra
AU  - C.S. Lalitha
TI  - Set Optimization Using Improvement Sets
JO  - Yugoslav journal of operations research
PY  - 2017
SP  - 153 
VL  - 27
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/
LA  - en
ID  - YJOR_2017_27_2_a1
ER  - 
%0 Journal Article
%A M. Dhingra
%A C.S. Lalitha
%T Set Optimization Using Improvement Sets
%J Yugoslav journal of operations research
%D 2017
%P 153 
%V 27
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/
%G en
%F YJOR_2017_27_2_a1
M. Dhingra; C.S. Lalitha. Set Optimization Using Improvement Sets. Yugoslav journal of operations research, Tome 27 (2017) no. 2, p. 153 . http://geodesic.mathdoc.fr/item/YJOR_2017_27_2_a1/